

HALIBUT COMMISSION

Accounting for temporal variability in productivity of Pacific halibut

Allan Hicks Piera Carpi, Ian Stewart

Pacific Halibut Workshop PICES Annual Meeting 2019

Pacific halibut (Hippoglossus stenolepis)

- Range from CA through BC, AK, and the western Pacific Ocean
- Live to greater than 30 years
- Grow to greater than 400 pounds
- Highly variable weight-at-age across years
- Have been observed to migrate very long distances

Pacific halibut fishing mortality

Pacific halibut weight-at-age

Recruitment Regimes

- Average age-0 recruitment is linked to environmental conditions
 - Pacific Decadal Oscillation (PDO)
 - ~1.5 to 3.2 times greater in good conditions

Productivity of Pacific halibut

Biological reference points

- Values that are useful for managing fish stocks
 - SB₀: Unfished spawning biomass
 - MSY: Maximum Sustainable Yield
 - RSB: Relative spawning biomass (relative to SB₀)
 - SPR: Spawning Potential Ratio
- These may change with changes in productivity

Equilibrium yield curve

- With no fishing
 - Yield is zero
 - Unfished biomass
- With extremely high F
 - Yield is zero
 - No biomass

Relative Spawning Biomass

Equilibrium yield curve

- MSY
 - Maximum Sustainable Yield
 - The maximum of the yield curve
- F_{MSY}
 - The fishing mortality rate that would result in MSY
- Productivity regimes
 - Change the shape of the equilibrium yield curve

Fishing Intensity

Dynamic Reference Points

Purpose:

- to investigate variability in reference points given
 - changes in productivity and selectivity
 - different types of uncertainty

Reference points considered:

- SB0: Unfished biomass given the current regime
- MSY: Maximum Sustainable Yield
- RSB_{MSY}: Relative spawning biomass at MSY
- SPR_{MSY}: Spawning Potential Ratio at MSY

Use of models for fisheries management

Conceptual Understanding	Strategic Planning	Tactical Decisions
Broad understanding	Long-term	Short-term
Forms underlying context for management planning	Policy goals	Operational objectives
Research	MSE	Harvest control rule
Investigate changes in productivity	Management procedures robust to temporal change	Past trends in productivity and short-term advice

FAO 2008. Technical guidelines for responsible fisheries. 4, Suppl. 2, Add. 1

Dynamic Reference Points

Methodology:

- Conceptual: Equilibrium model
- Tactical: 2018 stock assessment model
- Strategic: Coastwide MSE operating model

Main sources of variability considered:

- Environmental regimes
- Weight at age
- Selectivity
- Steepness
- Natural mortality

Equilibrium model

Results from stock assessment models

Results from MSE operating model

Conclusions

- SB₀ and MSY vary depending on regime
- RSB_{MSY} and SPR_{MSY} are more stable
 - $RSB_{MSY} \sim 20-30\%$
 - $SPR_{MSY} \sim 30-35\%$

Development of a harvest strategy

Management Strategy Evaluation (MSE)

INTERNATIONAL PACIFIC

