Statistical Characteristics of East Sea Mesoscale Eddies Detected, Tracked, and Grouped Using Satellite Altimeter Data from 1993 to 2017

KyungJae Lee, SungHyun Nam

(browneyed1221@gmail.com)

Seoul National University

Introduction (1/4)

What are mesoscale eddies?

25~250 km

Heat

Salt

Biochemical tracers

▲ FSLE (Finite Size Lyapunov Exponents) by AVISO at Ulleung Basin

Introduction (2/4)

Mesoscale eddies in the East Sea

▲ EKE distribution in the East Sea (Lee and Niiler, 2005)

- Variation of mean current and water mass distribution in the East sea (Mitchell et al.,2005; Lee and Niiler, 2010; Kim et al., 2004; Nam et al., 2016)
- Refraction of semi-diurnal internal tides in the eddy interior (Park and Watts, 2005; Nam and Park, 2008)
- High primary production at periphery of anticyclonic eddy (Lim et al., 2012)
- Low nitrate concentrations in the core of Ulleung Warm
 Eddy (Rho et al., 2010)

Introduction (3/4)

Previous studies about Eddy characteristics in the East Sea

Introduction (4/4)

- Limitation of previous studies
- Inconsistency among characteristics of same eddy groups from different studies
- > Limited to the specific regions or cases
- No report on the long-term mean characteristics of mesoscale eddies as a whole

Objective

> To quantify the long-term (25 years) characteristics and identify groups of mesoscale eddies in the East Sea

Data

▲ Schematics on near-surface circulation superimposed with bottom topography in the East Sea (Park et al., 2013). Each markers denote the CTD stations for four cruises.

Data	Variables	Period	Resolution
Absolute Dynamic Topography (ADT) (CMEMS)	Sea Surface elevation	1993.01.01~ 2017.06.30	0.25°×0.25°, daily
WOA 2001	Salinity, Temperature, Depth	mean	1° × 1° (horizontal), Standard depth in vertical, monthly
Cruise observation	Salinity, Temperature, Pressure	2015. 06	10~25 km (horizontal), 1 m (vertical), 2~4 hours among stations
Cruise observation	"	2015. 11	"
Cruise observation	"	2016. 04	"
Cruise observation	"	2017. 05	"

Methods (1/3)

Detecting

SSH based method (Chelton et al, 2011)

▲ Example for identified eddy (Ulleung Warm Eddy) from SSH contour (1cm interval)

Tracking

Maximum distances that the eddies can move

< 43 km

▲ Eddy tracking method

Improvement

1. Maximum size limits: Rhines scale (Eden et al, 2007; Theiss, 2006)

▲ Rhines scale at 01/Jan/2014 (5 × 5 grids horizontal smoothed)

- 2. At least, including 8 grids (minimum eddy size)
- 3. More than 1cm amplitudes at the eddy center
- 4. Lasting longer than 35 days

Methods (2/3)

◆ Definitions of eddy characteristics

- 1. Eddy Intensity $(EI, m^2/s^2/km^2)$
 - Eddy kinetic energy density inside the eddy
- 2. Eddy radius (R, km)
 - Radius of the circle that has the same area with the eddy.
- 3. Eddy amplitude (H, m)
 - ADT difference between eddy center and boundary
- 4. Eddy ellipticity (e)
 - **■** 0 < *e* < 1

▲ Eddy ellipticity identification

- 5. Eddy lifetime (*L*, *days*)
 - Days from generation to decay
- 6. Eddy Kinetic Energy $(EKE, TJ = 10^{12}J)$
 - $EKE(J) = \frac{1}{2}\rho_0\sqrt{u'^2 + v'^2}$, Sum of EKE inside the eddy
- 7. Available Potential Energy $(APE, TJ = 10^{12}J)$
 - $APE(J) = \frac{g^2 \rho'^2}{2\rho_0 N^2}$, Sum of APE inside the eddy
 - Regression equation from 4 cruise observation $APE(TJ) = 168 \times Amplitude(cm)$
- 8. Movement direction (d)
 - The direction of decaying point relative to the generation point
- 9. Movement distance (D, km)
 - Distance between generation and decaying points

Methods (3/3): group categorization

▲ Total anticyclonic (red) and cyclonic (blue) eddy generation points and tracks in 25 years.

- 1. Rotation direction
- 2. Generation locations
- 3. Activation locations
- 4. movement directions

❖ At least, 10 eddy tracks have to be included in each group

Results (1/5)

Comparison between cruise observation and eddy detection results

> Sea Level Elevation (cm)

Satellite
Altimetry
CTD
observation
Eddy Core
Eddy
boundary

Temperature (°C) and Available Potential Energy (J/m³)

Geostrophic velocity (m/s)

Results (2/5): mean characteristics

❖ Mean eddy characteristics

Movement characteristics

Anticyclonic

Cyclonic

Results (4/5): group characteristics (1)

◆ Anticyclonic eddy groups

Ulleung Warm Eddies	9	Southern Yamato Rise Warm Eddies
Northern Ulleung Basin Warm Eddies	10	Western Yamato Rise Warm Eddies
Wonsan Warm Eddies	11	Western Japan Basin Warm Eddies
Subpolar Frontal Warm Eddies	12	Western Japan Basin Coastal Warm Eddies
Oki Warm Eddies	13	Eastern Japan Basin Coastal Warm Eddies
Noto Warm Eddies	14	South Hokkaido Warm Eddies
Yamato Coastal Warm Eddies	15	Middle Hokkaido Warm Eddies
Central Yamato Warm Eddies	16	North Hokkaido Warm Eddies
	Northern Ulleung Basin Warm Eddies Wonsan Warm Eddies Subpolar Frontal Warm Eddies Oki Warm Eddies Noto Warm Eddies Yamato Coastal Warm Eddies Central Yamato Warm	Northern Ulleung Basin Warm Eddies

Results (5/5): group characteristics (2)

♦ Cyclonic eddy groups

1	Dok Cold Eddies	7	Central Yamato Basin Cold Eddies
_	Southern Subpolar		Cold Edules
2	Frontal Cold Eddies	0	8 Eastern Yamato Basin Coastal Cold Eddies
3	Northern Subpolar Frontal Cold Eddies	ð	
	Frontal Cold Eddles		Wastern Versate Dies
4	4 Wonsan Cold Eddies		Western Yamato Rise Cold Eddies
			W
5	Southern Yamato Basin Cold Eddies	10	Western Japan Basin Cold Eddies
	Dasin Colu Edules		Eastown Ianan Dasin
6	Southern Yamato Rise	11	Eastern Japan Basin Cold Eddies
	Cold Eddies		

Discussions (1/3)

1. Comparison with previous studies (movement characteristics)

> Ulleung Warm Eddy group

	This research	Shin et al., 2005	Lee and Niiler, 2010
Speed	0.9 cm/s	0.8 cm/s	0.14 cm/s
Direction	NE	$NW \rightarrow NE$	SE

> Dok Cold Eddy group

	This research	Mitchell et al., 2005
Direction	NE (SW→NE)	<i>SW</i> (1999.06- 11) → <i>W</i> (1999.11-12)

This research	Mitchell et al., 2005
1993. 01 ~	1999.06 ~
2017. 06	1999.12

> Oki warm eddies group

	This research	Isoda (1994)
Speed	0.6-2.2 cm/s	0.5-2.0 cm/s
Direction	NE	E

Discussions (2/3)

2. Comparison with global ocean mean

Movement characteristics

World ocean (Chelton et al, 2011)

East Sea

- Mesoscale eddies in the East Sea: shorter life time, lower amplitude, smaller radius, and stronger intensity than world ocean cases
- > Movement characteristics of mesoscale eddies in the East Sea are quite different for that in world ocean.

Summary and Future works

East Sea

World ocean

- > Why are the properties of eddy groups at southern part of the East Sea higher than the other groups?
- > Why are their movement patterns different with global ocean mean?
- > How do these eddy characteristics affect to transport biochemical tracers or energetics in the East Sea?

Thank you