Bio-acoustic monitoring with the Acoustic Zooplankton Fish Profiler (AZFP)

S. Pearce¹, J. Buermans¹, S. Gauthier², A. Rezvanifar³, T.P. Marques³, M. Cote³, A.B. Albu³ and D. Lemon¹

¹ASL Environmental Sciences Inc., Victoria, BC
² Fisheries and Oceans Canada, Inst. Ocean Sciences, Sidney, BC
³ University of Victoria, Victoria, BC

- Introduce ASL Environmental Sciences
- Introduce Acoustic Zooplankton Fish Profiler (AZFP)
- AZFP: Highlighted Projects
 - Slocum Glider
 - Computer Vision / Machine Learning, Pacific Herring

ASL: What do we do?

- Over 1200 Projects completed since 1977
- Staff of about 42:8 Ph.D.s, 13 M.Sc., 2 P.Eng.

ASL: What do we do?

- Products
 - e.g. AZFP (Mooring, Glider, Pole-mount)
- Field Services
 - Deployment, Recovery
- Consulting Services
 - Data Processing, Remote Sensing, Modeling

- Introduce ASL Environmental Sciences
- Introduce Acoustic Zooplankton Fish Profiler (AZFP)
- AZFP: Highlighted Projects
 - Slocum Glider
 - Computer Vision / Machine Learning, Pacific Herring

Acoustic Zooplankton Fish Profiler

•An inexpensive way of obtaining reliable, high resolution, **calibrated** acoustic backscatter measurements at several frequencies

- Upward looking or buoy-mounted
- Glider mounted
- CTD cage

Acoustic Zooplankton Fish Profiler

•Up to 4 channels in one instrument

Frequencies available:

- 67.5 kHz • 38 kHz
- 125 kHz 200 kHz
- 455 kHz • 333 kHz
 - 1250 kHz

• 2000 kHz

ASL Environmental Sciences

Calibration Procedure (Pt. 1)

- Calibration
 - Calibrated hydrophones (Reson TC4035, Reson 4038, or Onda HCN-1500; ±1 dB stated accuracy)
 - Secondary source, calibrated with our Reson 4035 and HCN-1500
 - Measurements of the on-axis values of the transmitted signal strength and the receiver response as a function of signal strength

Calibration Procedure (Pt. 2)

- Verification
 - Tungsten-carbide (WC) sphere suspended via monofilament line
 - Large freshwater tank (~6 m length, ~2.5 m diameter)
 - Measured target strength vs. theoretical target strength
 - Pass/Fail criterion: ±1 dB from theoretical target strength

Acoustic Zooplankton Fish Profiler

Long Time Series Analysis

- 6 Months of data shown as a 'cube'
- Days are represented by Z-Dimension

Gray Scale image shows high temporal resolution view of zooplankton descent between 0600 and 0700 PST

- internal waves affect zooplankton distribution
- Some fish follow zooplankton migration
- other fish remain near bottom

- Introduce ASL Environmental Sciences
- Introduce Acoustic Zooplankton Fish Profiler (AZFP)
- AZFP: Highlighted Projects
 - Slocum Glider
 - Computer Vision / Machine Learning, Pacific Herring

Antarctic Deployment

1 117

- 38, 67, 125 kHz

- 125, 200, 455, 769 kHz

(Photo courtesy of Grace Saba, Rutgers)

Images courtesy of Chad Lembke (USF) and Chris Taylor (NOAA)

- Introduce ASL Environmental Sciences
- Introduce Acoustic Zooplankton Fish Profiler (AZFP)
- AZFP: Highlighted Projects
 - Slocum Glider
 - Computer Vision / Machine Learning, Pacific Herring

UVic / DFO / ASL Collaboration

• Engage, Engage Plus grants (NSERC)

Machine Learning, Pacific Herring

Ground truth dataset

100 echograms

145 samples of Pacific herring schools

Comparison: Support Vector Machine (SVM) vs. Convolutional Neural Network (CNN)

Samples are used for the extraction of features and the training of the deep learning-based classifier.

Echograms with annotated samples (yellow bounding boxes)

Current/Future Work

- Single deep learning detection pipeline:
 - Single network to perform *localization* and *classification*
- Extension to other species, structures, and phenomena that can be monitored with echosounders:
 - Current: salmon, zooplankton
 - Future: suspended sediments, ocean turbulence, etc.

Acknowledgements

- Co-authors
 - DFO/IOS
 - UVic
- ONC
- Workshop Participants

Thank you!

