

Interoperating ocean sonar data of heterogeneous sources using **echopype**

Wu-Jung Lee | Applied Physics Laboratory Valentina Staneva | eScience Institute Kavin Nguyen | Department of Physics

PICES 2019, Victoria, BC, Canada October 17, 2019

The acoustic data deluge

- We have become very good at collecting data
- Continuous data collection on numerous platforms

 Excellent opportunities to study marine ecosystems at scales never before possible

These new data bring many new challenges

It used to be...

Data from different instruments days, weeks

But now...

- Significantly increased data volume
- Heterogenous instrument sources

Challenges of the Big Acoustic Data

- Interoperability
 - Many manufacturers, many sonar models
 - Proprietary software or open-source software written in proprietary languages (e.g., Matlab)

Sonar5-Pro

Sonar4

Challenges of the Big Acoustic Data

- Scalability
 - Current analysis workflow is labor-intensive
 - No support for parallel computation with random-access file formats

A typical fisheries sonar data analysis pipeline

Challenges of the Big Acoustic Data

- Interoperability
- Scalability
- Reproducibility
 - Currently mostly GUI-based: good for exploration but hard to reproduce
- Community
 - Workflow transformation
 - Community-driven development
 - Data convention

Vision

Analysis methods Interoperability Scalability Reproducibility Community Software tools Integrate data from heterogenous instrument sources Perform synoptic analyses over large spatial and temporal scales

 Long-term goal: make ocean sonar data an integrated component of standard oceanographic data sets

Vision

 Long-term goal: make ocean sonar data an integrated component of standard oceanographic data sets

Current common workflow requires extensive data wrangling

- Data wrangling is exhausting and expensive
- We should be spending more time here!

Ecological & fisheries
Perform interpretation

actual analysis

We can do better

Leverage the scientific Python ecosystem!

Current common workflow requires extensive data wrangling

Our proposed workflow

Simplify data wrangling, so that we can spend more time here!

echopype at a glance

- Follow ICES SONAR-netCDF4 for raw data storage when possible
- Take advantage of existing libraries
- Uniform interface to facilitate use and further development
- Calibration
- Other pre-processing

Data representation

Raw sonar data are just arrays

NumPy arrays

- Simple for Matlab users
- In-memory operations
- No labeled indexing for time, depth, frequency, etc.
- No metadata support

NetCDF4 gridded arrays

- More complex structure
- Allows direct access for efficient data selection/subsetting
- Labeled support for scientific interpretation
- Libraries for scalability and visualization
- Conversion tools for efficient cloud storage

Example notebook

- Watching a solar eclipse using an OOI sonar
- OOI = Ocean Observatories Initiative

Going forward 1: seek community input for sonar data convention

- echopype follows the SONAR-netCDF4 convention (ICES, May 2018) for raw data storage when possible
- Need convention for processed data to provide computational capability beyond raw data storage
- Generalizability vs efficiency?

Yet another standard?

HOW STANDARDS PROLIFERATE: (SEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC.)

SITUATION: THERE ARE 14 COMPETING STANDARDS.

SOON: SITUATION: THERE ARE 15 COMPETING STANDARDS.

Going forward 2: grow echopype

- Include more sonar data formats, currently echopype supports:
 - Simrad EK60 .raw files
 - ASL AZFP .01A files
- Add advanced analysis and visualization routines
- Streamline cloud deployment
- Engage community in testing and development

THANK YOU!

https://github.com/OSOceanAcoustics/echopype

Open-Source Ocean Acoustics

Home for open source tools and resources in ocean acoustics

- Other contributors
 - Fréderic Cyr (DFO)
 - Sven Gastauer (UCSD)
 - Marian Peña (IEO Spain)
 - Mark Langhirt (PSU)
 - Erin LaBrecque (freelance)
 - Emma Ozanich (UCSD)
 - Aaron Marburg (APL-UW)

- AZFP Matlab toolbox developer
 - Dave Billenness (ASL Env Sci)
- pyEcholab developers
 - Zac Berkowitz (SOI)
 - Rick Towler (AFSC)
 - Chuck Anderson, Veronica Martinez, Carrie Wall (NCEI)

