

WORKSHOP VW4 SB Topic Workshop: How does the Pacific Arctic gateway affect the marine system in the Central Arctic Ocean (CAO)?

Mechanisms of persistent high primary production during the growing season in the Chukchi Sea

Zijia Zheng, Xiaofan Luo, Hao Wei, Wei Zhao

Lab of Ocean Dynamics and Ecology

Tianjin University, Tianjin, China

PICES-2020 Annual Meeting 2020-10-13 18:50-19:10 PDT (ID14916 - LiveOral)

Email: zhengzijia@tju.edu.cn

1. Motivation

Mechanisms for persistent high primary production?

- Model: NAPA-BGC (NEMO3.6-LIM3 with modified PISCES-v2)
- Domain: North Atlantic, north Pacific, and Arctic Oceans
- Resolution: 1/4° in longitude/latitude; 75 vertical levels
- Forcing: Drakkar Forcing Sets version5.2
- Initial conditions: WOA13v2 (T, S, Nutrients, DO); GLODAPv2 (DIC,TA); GLORYS2v4 (U, V, SSH, sea ice)
- Open boundary: GLORYS2v4 (physical); TPXO8 (M2, S2, N2, K1, O1); WOA13v2 (Nutrients, DO); GLODAPv2 (DIC,TA)
- River: Dai & Tremberth, climatology
- Air pCO₂: NOOA, interannual

PISCES-v2: Pelagic Interactions Scheme for Carbon and Ecosystem Studies volume 2 (Aumont et al., 2015)

Physical fields and Nitrate concentration

Chlorophyll-a : averaged over 1998-2015

3. Relationship between NPP and water masses NPP, Nitrate flux and Volume flux

3. Relationship between NPP and water masses

Vertical distribution

3. Relationship between NPP and water masses

Water masses' contributions

4. Nitrate budgets in the biological hotspots

Subregions		ΔNIT	ΔNIT_B	ΔNIT_A	ΔNIT_V	ΔNIT_L
northern Chukchi	growing season	-2.36 ± 0.52	-3.10 ± 0.53	0.57 ± 0.34	1.03 ± 0.17	-0.86 ± 0.14
	non-growing season	2.15 ± 0.78	0.96 ± 0.14	1.52 ± 0.74	0.10 ± 0.03	-0.43 ± 0.10
southern Chukchi	growing season	-1.53 ± 0.58	-3.50 ± 0.71	2.14 ± 0.78	0.42 ± 0.15	$\textbf{-0.59}\pm0.07$
	non-growing season	2.19 ± 1.97	0.70 ± 0.12	1.61 ± 1.95	0.08 ± 0.04	$\textbf{-0.20}\pm0.05$

Variations and standard deviations in nitrate inventory (ΔNIT) and the contribution of biological processes (ΔNIT_B), advection (ΔNIT_A), vertical mixing (ΔNIT_V) and lateral mixing (ΔNIT_L) in the euphotic zone of the two biological hotspots from **May to September** (growing season) and **October to April** (non-growing season) averaged over 1998-2015. Positive (negative) values correspond to nitrate sources (sinks) in the euphotic zone (all in 10¹³ mmol N).

Nutrient supplement mechanisms:

- southern Chukchi: advecting Being Summer Water
- northern Chukchi: upwelling nutrient-rich Pacific Winter Water (circulation structure)

5. Summary

- Controls on primary production differ in the two Chukchi biological hotspots.
- Advecting Being Summer Water→ southern biological hotspot.
- Upwelling Remnant Pacific Winter Water → northern biological hotspot.

Thanks for your listening !

