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Arctic Integrated Ecosystem Research
Program (Arctic IERP)

Researchers from 11 institutions:

Pl's include: Ed Farley, Carol Ladd, Kris Cieciel, Alex De Robertis, Janet Duffy-

Anderson, Lisa Eisner, Jeff Guyon, Dave Kimmel, Johanna Vollenweider, Sharon "AF
Wildes, Libby Logerwell, Phyllis Stabeno, Chris Wilson, Seth Danielson, Franz Mueter,  AtASKA
Arny Blanchard, Sarah Hardy, Russ Hopcroft, Andrew McDonnell, Dean Stockwell, HH m

Jared Weems, Louise Copeman, Kate Stafford, Robert Levine, Ryan McCabe, Calvin
Mordy, and Danny Grunbaum, Kathy Kuletz, Elizabeth Labunski, Henry Huntington,
Julie Raymond-Yakoubian (Kawerak), Noah Naylor, Michael Lomas, with assistance
from many students, technicians, and colleagues.

Thank you
to all who have made the ASGARD and Arctic IES projects and the Arctic IERP possible. Including: the staff, students,
collaborators, funding agencies, program managers, community participants, subsistence hunt co-management

organizations, viIIage tribal councils, ship captains and crews, & field logistics support.
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How will reductions in sea ice & associated
environmental changes influence the flow of
energy through the northern Bering & Chukchi

sea ecosystems? S
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How will warming likely affect abundance of
fishes and invertebrates?

E. Farley, NOAA
AFSC




How is food security influenced by
environmental vs. socio-economic
factors?
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Arctic IERP Structure

1. Spring (June) Field Expeditions 2017 & 2018: Arctic
Shelf Growth, Advection, Respiration & Deposition
(ASGARD) Rate Experiments Project.

2. Summer (Aug-Sep) Field Expeditions 2017 & 2019:
Arctic Integrated Ecosystem Survey (Arctic IES).
Additional surveys in summer 2012 and 2013.

3. Year-round moorings

Many collaborating projects:
AMBON; ASAMM; BASIS; Bering Strait Moorings; CEO;
CHESS; DBO; MARES; NBS Bottom Trawl Survey; RASM;
Project Jukebox; Arctic Winds, Fish, Fins and Feathers




Stations
ASGARD (June):

Arctic |ES

(Aug-Sep):

Mooring
Process Station
2017 Station
2018 Station
2018 Acrobat

Arctic Integrated Ecosystem Survey (August 1 — September 28, 2017)
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Survey Components
(biomass & rates)

* Underway Currents & Atmospheric Data

e Water: physical, chemical, optical properties
* Particles & sedimentation (ASGARD)

* Microbes (ASGARD)

* Phytoplankton & Harmful Algae

* Microzooplankton

* Mesozooplankon

* Ichthyoplankton (Arctic IES)

* Fishes

e Epifauna & (Infauna ASGARD)

* Marine Mammals

 Seabirds

* Trophic transfer: fatty acids & fish diet (Arctic IES) L s




Physics and Nutrients



Annually averaged July - October temperature anomalies
over the Chukchi and Bering shelves.
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* Bering and Chukchi shelves are differently impacted by climate change - including the
magnitude of warming trends.

* The heat engines of both shelves accelerated over 2014-2018, with increased surface
heat flux and increased lateral oceanic heat advection.

* Arctic IERP occurred during these anomalously warm years — Are we experiencing the
future Arctic? Danielson et al. 2020



Steady-state solution to the heat balance for the
Bering-Chukchi Shelf system
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CEO Near-Seafloor Temperature
Sep. 2014 to Aug. 2018

Maximum
Oct 2015 +3°C_— temperature
-1 °C ' and duration
/ of warming
increased.
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Variability of nutrient content in the Chukchi Sea is tied
to the northward transport of water across the Chukchi

Sea and source water in the Bering Sea

M8 in late summer (Sept), C2 in following spring (mid-May) —
Seasonality important.
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Phytoplankton



Expansion of picoplankton populations in the Chukchi Sea

June 2017 T [ Aug- Toem e
Spatial and seasonal b 1.
distribution of
Synechococcus
(cells/ml) in surface
waters of the NBS and

Chukchi Sea.

Note the 100-fold
difference in scales
between spring and
late summer.
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Expansion of picoplankton populations in the Chukchi Sea

Biomass of Synechococcus (color Ratio of Synechococcus: Diatom biomass (S:D)
scale, ugC/L) plotted against TandS.  as a function of mixed layer (ML) temperature.
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Chlorophyll a biomass: total and >5 um (large) size fraction
ISpring(June) - Summelr(Aulg/Sep)

Average Integrated Chla
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Higher Chla in spring than summer. Different color scale in spring (max 475-600) and summer (max 130-150)

Most Chla was large (> 5 um) fraction in spring.

Large fraction Chla was lowest in summer 2019 (warmest year). Eisner, Lomas, in prep



Phytoplankton Primary Productivity
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Phytoplankton and seston fatty acids (FA) dynamics in
the northern Bering-Chukchi Sea

Mean chla (color) with total FA
concentration (open circles)
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Diversity and community structure of eukaryotic
phototrophs in the north Bering and Chukchi seas:

Summer (June, Aug, Sep 2017) metabarcoding survey of 18S rRNA gene diversity

Mean Picoeukaryote Relative Abundance
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Based on their biogeographical
distributions, abundant taxa
that may be negatively affected
as the region warms include:
Diatoms:

Chaetoceros sp.

Pseudo-nitzschia sp.
Picoplankton*:

Micromonas sp.

Phaeocystis sp.

* “Picophytoplankton” defined as Chlorophyta, Haptophyta, and Chrysophyceae Lekanoff et al. 2020



Harmful Algae Blooms
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Evidence for massive and recurrent toxic blooms of
Alexandrium catenella in the Alaskan Arctic
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Alexandrium catenella in
the Alaskan Arctic |

Seq

(a) Transport of blooms (orange dots) from NBS into the
Chukchi Sea. Flow speeds decrease allowing Alexandrium
cysts to be deposited (b).

(b) Bottom waters historically too cold to promote
germination of cysts. Continued deposition of new cysts - T
from the south. k= Northern HEIRG
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Paralytic shellfish toxins (PSTs) in Arctic food webs in 2019

Zooplankton Clams &Worms Fish Seals & Walrus
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* PSTs were detected in all trophic levels with the highest concentrations
in benthic clams.
* Fecal samples of Pacific walrus near St. Lawrence Is. contained PST

(walrus known to forage for clams in that area)
Lefebvre et al. 2022



/ooplankton and Fish larvae



Zooplankton Abundance in the Chukchi Sea (summer)
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Northern Liparis fabricii 4
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Fish



Changing fats in cod species from the Arctic

Experimental set-up of Arctic cod Days to starvation based on the lab-determined
in tanks temperature-dependent fat loss models

250

Experimental fish
2013 - cold year
2017 - warm year

200 4

150 g

Cold Year
100 4 (2013)

Days to starvation

50 4

Wa1rm year (12017) r | 1

-2 0 2 4 6
Winter Temp (°C)

Arctic cod has a unique fat storage strategy compared to other cods in the region.

High levels of Arctic cod starvation are likely to follow a warm fall; better survival

after a cold fall.

Arctic cod with high levels of fat storage showed elevated biomarkers

characteristic of diatom- and Calanus-copepod-sources. L. Copeman, NOAA




Arctic Cod (Boreogaadus Saida)

Life History
Conceptual Model
Seasonal Data

Results indicate potential spawning areas
(pink) during late winter/early spring and
advection of larvae northward to the Chukchi
Sea (nursery area) during spring/summer.

The adult model (green arrows) indicates
most of these fish are off the shelf during
summer and they migrate during late fall
south, spawn during late winter/early spring,
and migrate back north during spring.
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Pelagic fishes are dominated by small age-O

2017 Midwater Catch by Abundance

2019 Midwater Catch by Abundance
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High interannual
variability in
abundance and
distribution
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* Age-0 Arctic cod continue
to dominate the pelagic
fish community
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Year-round acoustic
observations from
moorings
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Sea [ LU

Ice

70 kHz Backscatter (s,, m? nmi~2)

—
dn——
*"""f.:.--

| -

ey

Cld - '
| —

Sea Floor

3000

25001
2000 1
1500 1
1000
500 {

10000
8000 1
6000 1
4000 1
2000 1

10000
8000 1
6000 1 |
4000 1 {
2000'::

. +  2-Hour Interval
’ — Daily Mean

Oct Jan  Apr Jul oct Jan  Apr Jul

2017 2018 2019
Levine et al., in review



Hypothesized Scenarios for the Gadid Community

Historical Warming Warming + Transport
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Pelagic Export & Benthic Carbon
Consumption



Pelagic Export- Highly efficient
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Spatial patterns and effects of temperature on rates of
organic matter processing in sediments (microbes and
metazoans) across the NBS and southern Chukchi Sea
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Summary

« Increased surface heat flux exchanges and oceanic heat advection over the Bering and
Chukchi shelves during our study years.

- Majority of Primary Production and Chla biomass from large phytoplankton, but small
phytoplankton important (e.g. Synechococcous) in regard to carbon contribution,
particularly in summer and in warmer years (2019).

- Small phytoplankton and small copepods increased and large lipid-rich copepods
(Calanus glacialis) decreased in warm years.

- Harmful Algae Blooms (Alexandrium sp.) are increasing with warming in the Chukchi
Sea; blooms advected into Chukchi and locally produced from extensive cyst beds.
Toxins found in food web.

- Borealization evident for many taxa with expansion north of warmer water species
(e.g., yellowfin sole larvae, age-0 Pollock and Pacific cod) and contraction north of cold
water species (e.g., Arctic cod larvae and age-0s).

- Higher metabolic requirements at higher temperatures (e.g., increased sediment
carbon consumption) or lack of high energy prey resources (e.g., reduction of large
lipid rich copepods in age-0 Arctic cod diets) will likely impact community structure at
many trophic levels.



Climate change
predictions for
gateway seas
(Mueter et al.
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Pelagic-Benthic Synthesis Project



Benthic-pelagic de-coupling:
Ecosystem re-assembly in the
Northern Bering and Chukchi seas

Institutional Principle Investigators (alphabetical order):

Jackie Grebmeier and Lee Cooper (University of Maryland Center for Environmental Science)
Katrin Iken (University of Alaska Fairbanks)

Elizabeth Logerwell* and James Thorson (NOAA Alaska Fisheries Science Center)

Mike Lomas (Bigelow Laboratory for Ocean Sciences)

Ryan McCabe (NOAA Pacific Marine Environmental Laboratory)

Calvin Mordy (University of Washington)

Astrid Schnetzer (North Carolina State University )

*Lead PI



Overarching questions

= Has there been and will there continue to be a reorganization of the
Northern Bering - Chukchi Sea ecosystem resulting from a breakdown
in benthic-pelagic coupling?

= Has the prey base for subsistence resources (e.g., benthic foraging
marine mammals and birds) and commercial groundfish and crab
declined or increased?

- What are the observed and predicted spatial patterns of temporal
change?



Benthic-Pelagic Conceptual Model (Past)
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PICES WG-44



INTEGRATED ECOSYSTEM ASSESSMENT OF THE NORTHERN BERING SEA —
CHUKCHI SEA (NBS-CS) (WG 44)
PICES/ICES

Chairs: Yury Zuenko and Libby Logerwell

Terms of reference - General

* Convene an interdisciplinary and international working group
* Include Arctic peoples and Indigenous Knowledge systems
* |dentify and consult with partners and institutions



Goals

Activities

* Assess ecosystem status and trends
* |dentify potential impacts/risks

* Knowledge gap analysis

Deliverables

* Integrated Ecosystem Assessment for the Northern Bering Sea-
Chukchi Sea LME.

e Journal articles
e Outreach activities
* Knowledge Gap and Next Steps Report



Example Model
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