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Introduction: Marine Heatwaves (MHWSs)
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* persistent warm water extremes.
 ecological devastating.
« occur everywhere in the ocean.

 stronger in the future.

Marine Heatwaves occur everywhere in the ocean

2003: Mediterranean Sea

4°C warmer than average for 30 days
Largest event on record

Mass mortality of marine life in rocky reefs

p

Warm air (“normal heatwaves")
can drive marine heatwaves by
warming the ocean surface

%
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2011: Western Australia

Ocean currents can drive
marine heatwaves by moving
around warm water

Largest event on record

Seaweeds, fish and sharks moved south

Climate modes, like El Nino, can cause
marine heatwave events to occur

Over 3°C warmer than average for 60 days

2013-2015: "The Blob"

2'4°C warmer than average for 226 days
Longest event on record

Caused unseasonably warm weather in
Pacific Northwest of USA and Canada

2012: Northwest Atlantic

, 2%:°Cwarmer than average for 56 days
Largest event on record

Lobster fishery peaked early and led to
Canada-USA economic tensions




Introduction: Marine Heatwaves (MHWSs)
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Introduction: Marine Heatwaves (MHWSs)
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Figure 6. Normalised anomalies averaged over the 62 identified extreme MHW regions, before (average of

6 to 3 weeks prior to event peak, top panels) and after (average of 3 to 6 weeks after event peak, lower panels)
the peak of the event. Coloured lines indicate the latitudinal extent of the MHW. Numbers indicate the regions
shown in Fig, 5. Large, black circles indicate anomalies are within the top decile of anomalies for the same
4-week period across all years; large, red circles indicate the most extreme of all the anomalies for the same
4-week period across all years. Percentages above each panel indicate the percentage of regions for which
anomalies are > 0.
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Introduction: Marine Heatwaves (MHWSs)

(Holbrook et al.,2019)
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Oceanic mesoscale eddies

Modeled Processes
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Introduction: Oceanic Mesoscale eddies

Features:

Oceanic mesoscale eddies with a horizontal scale from a few
tens to several hundreds of kilometers, manifested in the form of
fronts, filaments and coherent vortices, are the most prominent
feature in the upper ocean. They account for 70% of oceanic
Kinetic energy and contribute importantly to the SST variability
via their induced heat flux convergence. Yet the effects of

mesoscale eddies on the MHW life cycles in the global ocean

remain unexplored.



Introduction: Oceanic Mesoscale eddies

Oceanic eddies have seasonal features, though their occurrence and characteristics can vary significantly depending on geographic

location and oceanographic conditions.

* North Atlantic: The Gulf Stream is known for intense eddy

activity, with eddies more frequently detaching in the spring

and early summer.
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* Western Pacific: The Kuroshio Current off Japan also

Depth
S00m N

shows seasonal variations in eddy formation, often linked to

Ocean
Interior

changes in wind stress and stratification throughout the year.

» Southern Ocean: Eddy activity around Antarctica can be
influenced by seasonal sea ice cover changes, impacting the

formation and decay of eddies.



Model: MHW Statistics (during 1982-2021)

Duration (OISST)

S
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Our study is based on a coupled high-resolution ’{”’ N

simulation CESM-H. Performance of the CESM-H

in simulating MHWs is evaluated against satellite
observations and compared with an ensemble of

coarse resolution CMIP6.

« The CESM-H reproduces MHW properties

reasonably well.
» Better than coarse resolution simulations.
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Result: Drivers of global MHW life cycle
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MIX Heat flux convergence by mesoscale eddies (HFC-E), is the crucial

driver of global MHWSs growth and decay.



Result: Dominant Drivers of global MHW life cycle in different regions
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* The western boundary currents and their extensions
(encompassed by light blue line),

* The Southern Ocean (pink lines),

» The central-to-eastern equatorial Pacific (yellow lines),

» The eastern boundary upwelling systems (deep blue lines),

» The subtropical gyre interior (white lines).
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Result: Sensitive Test of MHW budget within different water volume
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Result: Drivers of global MHW life cycle (whose spatial scale > spatial scale of mesoscale eddies)
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The dominant drivers of MHW life cycles taken over by HFC-M
and NHF, while HFC-E still significant in WBCEs.




Result: Dominant Drivers of global MHW life cycle in different regions
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Result: Scale-dependent drivers of global MHWSs (during the growing phase)
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» Mesoscale eddy effects (HFC-E) decrease as MHW spatial scales increase. NHF on the contrary.



Result: Scale-dependent drivers of global MHWSs (during the decaying phase)

3%x 3°

7~ HFC-E y4&

" 10.1°%019

HFC-E A

HFC-M

NHF

MIX

« Same as MHW growing phase, but NHF cooling effect not obviously sensitive to spatial scales.



Result: NHF decomposition in MHW growing phase

Qnet = Qa — a(T)’

Heat flux anomaly induced
by ocean processes.

A e S AN P P S SRN Y W\ Heat flux anomaly induced
L ‘ ‘& S " o by stochastic atmospheric
forcing.

» Mesoscale eddies (NHF-O) damp atmospheric warming effect (NHF-A) to MHW growth, by enhancing turbulent heat flux.

 NHF-O and NHF-A change in opposite directions as MHW spatial scale increase.

(Frankignoul 1998,2002)



Result: NHF decomposition in MHW decaying phase
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Heat flux anomaly induced
by ocean processes.

Heat flux anomaly induced
by stochastic atmospheric
forcing.

» Mesoscale eddies (NHF-O) cool MHW throughout the whole MHW life cycle.
» The NHF does not appear to change significantly across MHW spatial scales due to the opposite directions of NHF-O and NHF-A.



Method: Two way of mesoscale eddies contribute to MHWSs

Mesoscale eddy roles

Eddy advection

_|_

Eddy-induced ASHF



Result: Transition Scale of global MHWSs (according to mesoscale eddy significant)
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Transition Scale (L;): The spatial scale where MHWSs shift from

being predominantly driven by mesoscale eddies to other factors.
(HFC-E + NHF-O) < (HFC-M + NHF-A + MIX)

* Larger Ly, meososcale eddies are essential for MHW growth.

* Smaller Ly, meosocale eddies are not significant for MHWs.
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L, varies geographically, being largest in the WBCEs and EBUSs, but

smallest in the subtropical gyre interior.



Result: Transition Scale in the future (according to mesoscale eddy significant)

Transition Scale (L;): The spatial scale where MHWSs shift from

oo “RopL, /‘! = R being predominantly driven by mesoscale eddies to other factors.

growing phase’ "1t

(HFC-E + NHF-O) < (HFC-M + NHF-A + MIX)

* Larger Ly, meososcale eddies are essential for MHW growth.

* Smaller Ly, meosocale eddies are not significant for MHWs.
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» Global warming reduced mesoscale eddy effects, while larger-

scale processes become relatively significant, making MHWSs

prediction more stable in the future.



Summary 1: Oceanic Mesoscale Eddies as a Crucial Drivers of Global Marine Heatwaves

» Here, we use a historical simulation from a global eddy-resolving climate model with improved representation of MHWs,

and show that heat flux convergence by oceanic mesoscale eddies acts as a dominant driver of MHW life cycles over most

parts of the global ocean.

 In particular, the mesoscale eddies make an important contribution to growth and decay of MHWSs, whose characteristic

spatial scale is comparable or even larger than that of mesoscale eddies.

» The effect of mesoscale eddies is spatially heterogeneous, becoming more dominant in the western boundary currents and

their extensions, the Southern Ocean, as well as the eastern boundary upwelling systems.

» This study reveals the crucial role of mesoscale eddies in controlling the global MHW life cycles and highlights that using

eddy-resolving ocean models is essential, albeit not necessarily fully sufficient, for accurate MHW forecasts.



Question: Ocean or Atmospheric-driven MHWS ?

2003: Mediterranean MHW (Amaya et al. 2020)
Historical MHWs 2011: Western Australia MHW (Pearce and Feng 2013; Benthuysen et al. 2014)
2013-2015: The Blob (Di Lorenzo and Mantua 2016)

MHW studies (Benthuysen et al. 2014; Holbrook et al. 2019;
climate mode modulation Holbrook et al. 2020; Hu 2021; Vogt et al. 2022)

global MHWSs ocean heat advection (Marin et al. 2022)
local drivers

anomalous ASHF (Vogt et al. 2022)

Paradox in previous studies.



Result: Ocean or Atmospheric-driven MHWSs?

Spatial scales 0.1°x0.1°
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Result: Ocean or Atmospheric-driven MHWSs?

Spatial scales 0.1°x0.1°

_Ocean |8

ADV-0
Ocean-driven
advection

Schematic of a MHW growing and decaying phases

tp

90™ Threshold

NHF-O
NHF induced by
0cean pProcesses.

5 g -
"k\ {01°%0.4%)
NHF-A :

by stochastic
atmospheric forcing

Qn”
pOCﬁH
HF-A

+(=Vy" (“ET))IJ
ADV-A

ADV-A
wind-driven
advection The NHF-A are much smaller in magnitude compared to
ADV-0 and play secondary roles in driving the MHW life
MIX cycles




Result: Ocean or Atmospheric-driven MHWSs?

Spatial scales 0.1°x0.1°

Schematic of a MHW growing and decaying phases
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« Contribution of ocean processes decreasel with

MHW spatial scale increase I

» Contribution of atmospheric processes increaset

with MHW spatial scale increaset :




Result: Ocean or Atmospheric-driven MHWSs? (decaying phase)

Spatial scales 0.1°x0.1° Schematic of a MHW growing and decaying phases
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Result: Scale-dependent drivers of global MHWSs

J 0 : : : i i
GO WBCEs ACC EBUSs GlI GO WBCEs ACC EBUSs Gl

Transition Scale (L, ) Spatial scale that MHWSs change from ocean-

driven to atmospheric-driven.

* Larger Ly, oceanic processes are essential for MHW growth.

Smaller Ly, atmospheric processes are more important for

MHWs.

(ADV-O + NHF-0O) < (ADV-A + NHF-A)

» The paradox in previous studies can be explained by the fact

that Ly varies geographically.

* Ly help to guide on focus and methods for improving MHW

forecast capacity.



Result: Ocean or Atmospheric-driven MHWSs?

a MHW growing phase b MHW decaying phase
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e L aresimilar during the MHW growing and decaying phases.

e Ly islarger in eddy-rich regions while smaller in gyre interior.



Summary

c Mesoscale eddies are crucial drivers of global MHW:s life cycle.

Mesoscale eddies are important drivers of MHWSs when their spatial scales are smaller

than the transition scale.

e Global MHW transition scales varies geographically.

It is essential to improve the quality of in-situ observation system in large L regions,
such as WBCEs and EBUS.

e Eddy effects to global MHWs intensified in a warmer future.

Mesoscale eddies will be less significant in global MHWSs in a warmer future, making

MHW prediction more stable.
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