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Introduction

* 90% of excess energy due to anthropogenic greenhouse gas emissions has been taken by the ocean,
leading to sea-level rise or extreme temperature rise events (Zanna et al., 2019; PNAS)
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Introduction

* 90% of excess energy due to anthropogenic greenhouse gas emissions has been taken by the ocean,
leading to sea-level rise or extreme temperature rise events (Zanna et al., 2019; PNAS)

« Anomalously warm seawater events have occurred with increasing frequency and duration over the past
century (Oliver et al., 2018; Nature communication)
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Introduction

* 90% of excess energy due to anthropogenic greenhouse gas emissions has been taken by the ocean,
leading to sea-level rise or extreme temperature rise events (Zanna et al., 2019; PNAS)

« Anomalously warm seawater events have occurred with increasing frequency and duration over the past
century (Oliver et al., 2018; Nature communication)

« The ecological impact depends on the characteristics of the warm seawater event, including its duration and
intensity
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Introduction

* 90% of excess energy due to anthropogenic greenhouse gas emissions has been taken by the ocean,
leading to sea-level rise or extreme temperature rise events (Zanna et al., 2019; PNAS).

« Anomalously warm seawater events have occurred with increasing frequency and duration over the past
century (Oliver et al., 2018; Nature communication)

« The ecological impact depends on the characteristics of the warm seawater event, including its duration and

intensity

 The Hobday et al. (2016) provides the hierarchical approach to describe Marine Heat Wave (MHW)
characteristics: Discrete prolonged anomalously warm water event in a particular location
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How the interannual variation of MHWSs in the western North Pacific Ocean and its marginal
seas are related to the well-known climate variability?



Data and Method

Data period resolution variable
OISSTv2 0.25°, daily Sea Surface Temperature
Surface Air Temperature,
_ Surface net heat flux,
ERA5S 1982 0.25°, daily Sea Level Pressure,
2022 Wind,
Geopotential
GPCP 2.5°, monthly precipitation
SODA 3.4.2 12%82%- 0.5°, monthly Sea Surface Height

MHW events are defined following the Hobday et al. (2016),

Qualitative definition of MHW:
Discrete prolonged anomalously warm water event in a
particular location

Quantitative definition:

Discrete: gaps between events of two days or less will be considered

as a continuous event

Prolonged: persistent for at least five days
Anomalously warm: warm temperature higher than 90% percentile

for given calendar day
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Results: Spatial Distribution of the Climatological MHWSs
MHW days/year

Hotspots for MHWS:

EKB : East Korea Bay
ECS : East China Sea
WNP: Western North Pacific
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1. Long-term increasing trend
2. Year-to-year variation
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Area-averaged MHW days timeseries
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The spectral analysis reveals a clear distinction between interannual and decadal components



Area-averaged MHW days timeseries (Interannual)
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« The spectral analysis reveals a clear distinction between interannual and decadal components
« The interannual component shows significant correlation with Niflo 3.4 index leading 8 months (r = 0.40, p <.05)

(No significant correlation with PDO, NPGO, and AO index within a 12-month window )

Q1. Relation between ENSO transitions and peaks of the interannual component?



Area-averaged MHW days timeseries (Interannual) 0
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Q1. Relation between ENSO transitions and peaks
of the interannual component?
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« Within a 41-year span, there have been nine transitions from El Nifio to La Nifia, during
which the interannual component peaked six times

-> El Nifio to La Nifa Transition Year (ELT Year) : 83, 88, 98, 10, 16, 20

« Seven peak years of the interannual component during which the Nifio index did not show transitions

-> Non-Transition Year (NT Year) : 91, 94, 01, 04, 06, 08, 13

Q2. Other climate drivers for the years that do not coincides with the ENSO transitions?



Interannual component: ELT Year and NT Year
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ELT Year:
«  MHWSs occurred primarily over the WNP ocean
« Asignificant positive MHW days anomaly is observed throughout the year
NT Year:
«  MHWSs occurred not only over the WNP but also in its marginal seas including the ECS and ES

« A prominent positive MHW anomaly occurs during the summer 5



Interannual component: ELT Year

Area-averaged over the target domain
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« Positive SST anomaly throughout the ELT year of the ENSO teleconnection?
 Direction of the heat flux
El Nino phase: Downward heat flux aligns with the SST increase - Heat flux-driven MHWSs
Transition to La Nifla phase: Upward heat flux - Ocean-driven MHWs
« Latent heat flux is the primary contributor to the net heat flux = Conditions in lower atmosphere & upper ocean? 8




Interannual component:

Mature Phase of El Nifio (ONDJ)
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e Positive SST anomaly in the WNP Ocean and East Asian marginal seas
 Downward turbulent heat flux anomaly

Relationship with El Nino?

PSAC: Thermodynamic coupling of the low-level atmospheric Rossby
waves and the oceanic mixed layer (Wang et al., 2000)

KAC: Response of the competing forcings from precipitation anomaly in
Central Pacific and Western North Pacific (Kim et al., 2018)




Interannual component: ELT Year 10
Mature Phase of El Nino (ONDJ)
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Interannual component: ELT Year
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Distinct pathways of the
ENSO teleconnection!
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Interannual component: NT Year AS 1y
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« Heat flux drives the MHW days variability
 Downward SW radiation anomaly during the summer
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Interannual component: NT Year
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Circum-Global Teleconnection (CGT) pattern (Ding and Wang, 2005)
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* The enhanced downward SW radiation by suppressed convective activity
« The anticyclonic circulation over the East Asia embedded on the CGT pattern
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Conclusion 14
Q1. Relation between ENSO transitions and peaks of the interannual component?
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Q2. Other climate drivers for the years that do not coincides with the ENSO transitions?
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