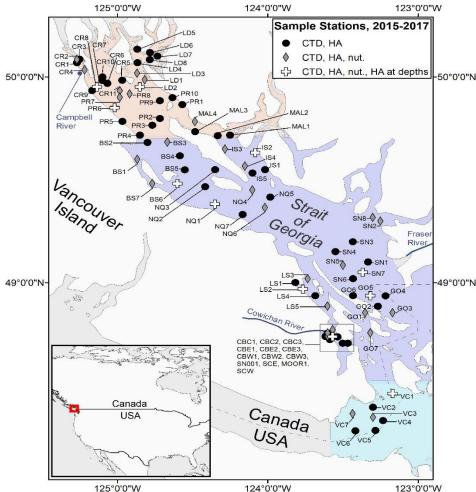


Harmful algae dynamics in the Strait of Georgia, Canada

Svetlana Esenkulova and Isobel Pearsall

Pacific Salmon Foundation, Vancouver, Canada


e-mail: sesenkulova@psf.ca

PSF Citizen Science Oceanography Program 2015-2024

"scientific work undertaken by members of the general public, often in collaboration with or under the direction of professional scientists and scientific institutions"

Our program is endorsed by Intergovernmental Oceanographic Commission UNESCO - section Global HAB

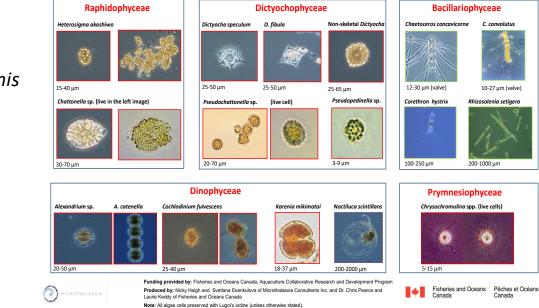
Trained 7 crews collect samples Analysis – PSF, DFO, UBC

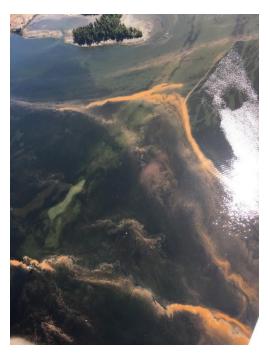
~55 PSF stations

~20 trip/year

February – October: 2/3 times a month November – January: once a month

CTD and Phytoplankton – each station **Nutrients** ~30 stations **Biotoxins** – 4 stations




narini ul Aigae Negatively inipacting rinish Aquaculture in british Columbia

Photographs of algal species that produce toxins harmful to fish are framed with red; species that are mechanically harmful are framed in green; other - purple.

Enumerated (cell mL⁻¹): Alexandrium spp. C. convolutus and C. concavicornis Cochlodinium fulvescens Dictyocha spp. Dinophysis spp. Heterosigma akashiwo Noctiluca scintillans Rhizosolenia setigera

Pseudo-nitzschia spp.



Heterosigma + *Noctiluca*, 2018, Kuper

Photos by: M. Bahrey and Esenkulova

Gonyaulax spp, June 2018, Mill Bay

Heterocapsa triquetra, June 2021, Bute Inlet

Mixed bloom, July 2021, Howe Sound

DATA - Data Center http://sogdatacentre.ca/

Atlas of Oceanographic Conditions in the Strait of Georgia (2015-2017) based on the Pacific Salmon Foundation Citizen Science Dataset

> Rhys Chappell and Rich Pawlowicz nent of Earth, Ocean and Atmospheric Sciences University of British Columbia

> > April 27, 2018

PLOTS - Digital Atlas, updated annually (Dr. Rich Pawlowicz, UBC) https://sogdatacentre.ca/atlas/

Annual reports – "Harmful algal blooms and oceanographic conditions in the Strait of Georgia" for the DFO State of the Pacific Ocean

Peer-reviewed publications – S. Esenkulova et al, 2021 Harmful Algae and Oceanographic Conditions in the Strait of Georgia, Canada, Based on Citizen Science Monitoring, Frontiers in Marine Science <u>https://doi.org/10.3389/fmars.2021.725092</u>

Social Media – HAB updates on facebook page https://www.facebook.com/CitizenSciencePhytoplankton

Published results based on 4 years data

S. Esenkulova et al, 2021 Harmful Algae and Oceanographic Conditions in the Strait of Georgia, Canada, Based on Citizen Science Monitoring

			Alexandrium spp.	Heterosigma akashiwo	Dictyocha spp. -0.406	
Secchi depth	0.429	-0.645	-0.497	-0.565		
Temperature	-0.509	0.665	0.753	0.58	0.498	
Salinity	0.368	-0.284	-0.363	-0.361	-0.441	
Stratification	-0.537	0.619	0.611	0.709	0.443	
Nitrate	0.609	-0.477	-0.651	-0.541	-0.408	
Phosphate	0.613	-0.312	-0.557	-0.383	-0.3	
Silicate	0.048	0.003	-0.205	0.04	0.062	
Wind speed	0.222	-0.074	-0.174	-0.217	-0.225	
Rainfall	0.171	-0.417	-0.505	-0.466	-0.225	
Cloud cover	0.352	-0.362	-0.653	-0.379	-0.155	
Fraser river flow	-0.034	0.066	0.33	0.35	-0.01	

Intra-annual between mean monthly concentrations of HABs taxa and various physical and chemical variables from March to September

Bold font indicates statistically significant values.

	Environmental drivers				Nutrients			
	Temperature	Salinity	Stratification	Secchi	N	Р	N:P	Si
Heterosigma akashiwo	-0.131	-0.178	0.237	-0.110	-0.008	0.035	-0.035	0.227
Alexandrium spp.	-0.143	0.169	-0.140	0.106	0.058	0.023	0.058	-0.036
Dictyocha spp.	-0.051	-0.070	-0.022	-0.096	0.013	-0.165	0.110	-0.146
Rhizosolenia setigera	0.100	0.226	-0.027	-0.002	0.066	-0.029	0.095	-0.287
Chaetoceros convolutus and C. concavicornis	-0.098	0.084	-0.048	0.053	0.050	0.065	0.031	-0.019

Bold font indicates statistically significant values.

Inter-annual relationships between mean HABs taxa concentrations and environmental drivers and nutrients during summer (June - August)

- atypical phytoplankton dynamics during the 2015 (super El Niño)
- Extremely early spring bloom (Feburary vs April)
- Unusual spring bloom composition (Skeletomena vs. a mix of Thalassiosira, Chaetoceros, and Skeletonema)
- High levels of Chaetoceros convolutes/ concavicorne in spring
- Very low cell counts in summer, no summer HABs

S. Esenkulova et al, 2021 Harmful Algae and Oceanographic Conditions in the Strait of Georgia, Canada, Based on Citizen Science Monitoring

a rare coccolithophores bloom in late summer of **2016** uncommon here due to generally lower pH conditions

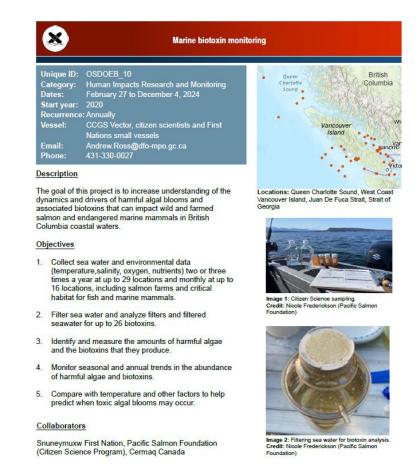
Will Duguid, PSF, Maple Bay, 2016

https://www.news24.com/news24/pic-strait-of-georgia-turns-green-asmysterious-phytoplankton-blooms-20160905

Associated conditions: lower-than-average precipitation and reduced freshwater discharge in 9 years

Jim Gower, DFO, August 19, 2016

Summer **2021** - The first confirmed (BC Centre for Disease Control) infection in a human (man from Denman Island, infected at Baynes Sound) caused by rare Shewanella algae/ bacterium

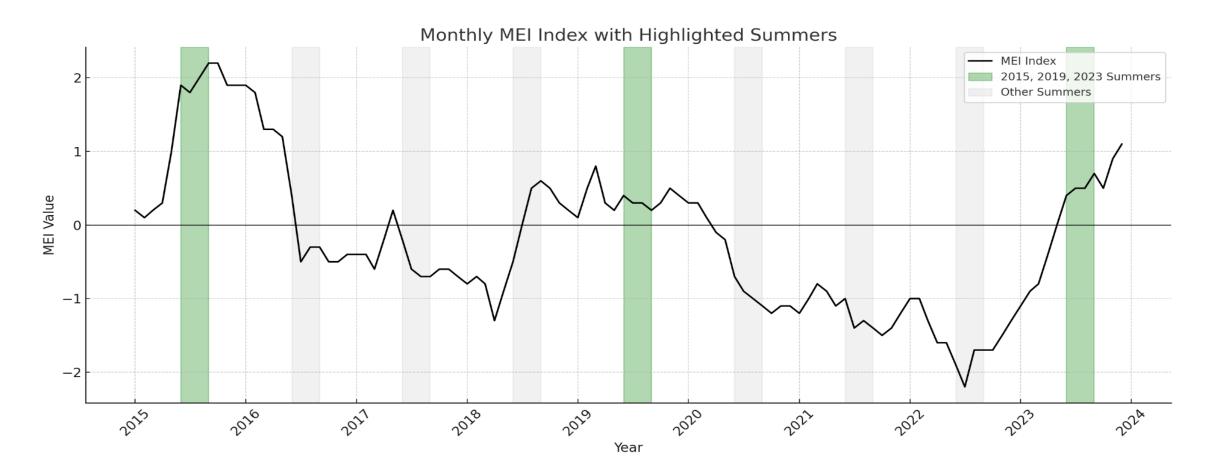

https://www.pqbnews.com/news/denman-island-mans-infection-from-rare-bacteria-raising-questions-1193860

Shewanella is presumably typical for tropical waters

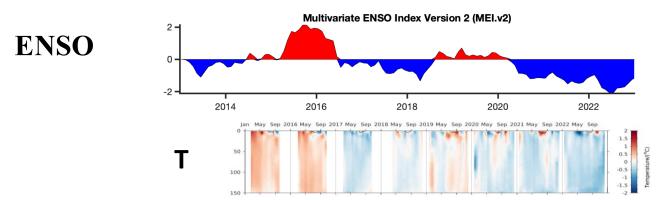
Shewanella species are emerging pathogens (Ng et al., 2022)

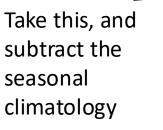
Associated conditions: July and August SST were generally warmer than usual, significantly higher PAR

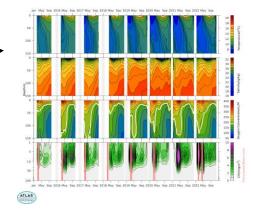
- Very high abundance of Proroceratium reticulatum (Yessotoxin producer) in 2022 in July-August (up to 90 cell mL⁻¹)
- Yessotoxin in water was abundant (SOPO 2023, Ross et al.)
- Associated conditions: exceptionally high Fraser River discharge in July



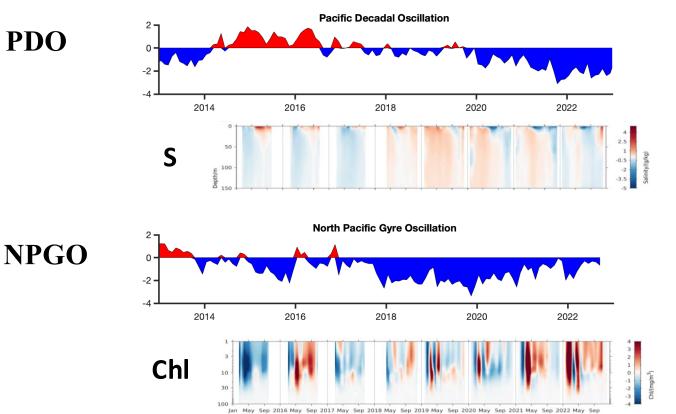
Fisheries and Oceans


10




Alexandrium (PSP) noticeable less common in El Nino summers

Climate Anomalies and CitSc CTD profiles


Temperature field at depth and ENSO/PDO?

Surface Salinity and PDO?

Deeper Salinity and NPGO?

Summer Chl and NPGO?

Dr. Rich Pawlowicz, UBC

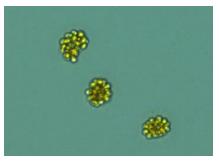
- DFO juvenile salmon studies
- Pilot phytoplankton sampling add-on
- Opportunistic juvenile salmon histology

*

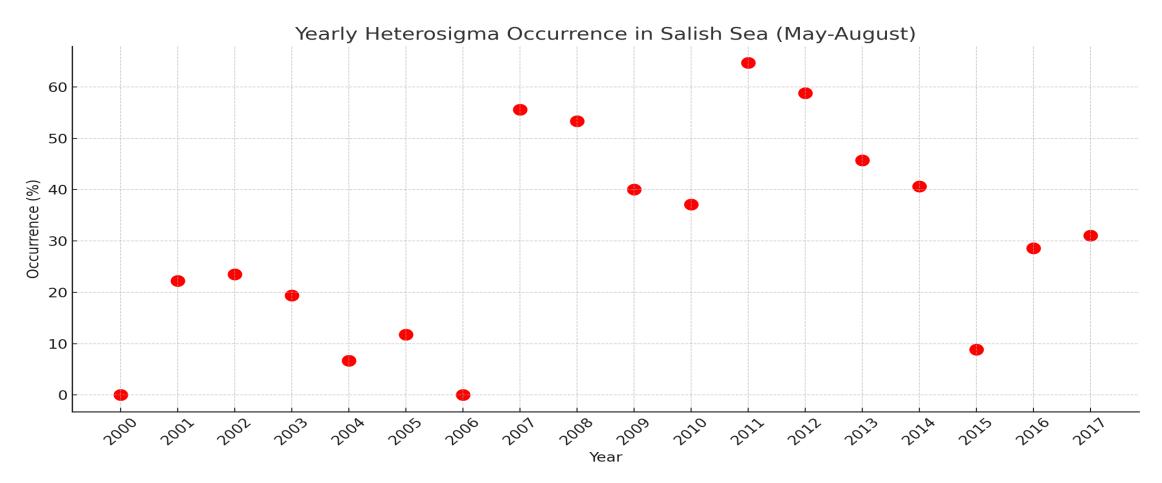
Pêches et Océans Canada Fisheries and Oceans Canada

Esenkulova S, Neville C, DiCicco E, Pearsall I. Indications that algal blooms may affect wild salmon in a similar way as farmed salmon. Harmful Algae. 2022 Oct 1;118:102310

Heterosigma akashiwo – HAMP data


Microthallasia – Nicky Haigh

Samudra – Jay Pudota


Data for the most consistently taken couple of sites

Average for May-August

Heterosigma occurrence in the Salish Sea, HAMP

The trend analysis (linear regression) shows a slight positive slope of approximately **1.65% per year** in Heterosigma occurrence, indicating a **potential increase over time**. However p-value is **0.073**

Summary

- There were several unusual HAB observations in the last 10 years in the Salish Sea
- HABs summary and unusual observations for each year is in annual DFO State of the Pacific Ocean reports, chapter by Esenkulova et al.

https://www.dfo-mpo.gc.ca/oceans/publications/soto-rceo/2021/technical-technique-eng.html

- Based on 17 years of HAMP data, Heterosigma occurrence may be trending upwards
- Understanding shifts in harmful algae distribution and prevalence is important for assessing impacts on trophic level transfer, human health, and the food supply for salmon

E-mail: sesenkulova@psf.ca