A study on the diversity of sand-dwelling dinoflagellates at Pyoseon Beach on Jeju Island, Korea from spring to winter 2023

<u>Su-Min Kang</u>, Joon-Baek Lee and Jin Ho Kim

Department of Earth and Marine Sciences, Jeju National University, Republic of Korea

1. Introduction

2. Materials and Methods

3. Results and Discussion

4. Summary and Conclusion

Introduction

S

The reported number of dinoflagellate specie

• Globally, over 3,500 species have been reported (Guiry and Guiry 2023)

Habitats

Corals

Seaweeds

Sand sediments

Introduction

- Recently, there has been an increasing interest in their ecological importance and diversity, leading to the continuous reporting of new genera and species.
- Some benthic dinoflagellates produce toxins that cause economic, health, and ecological damage.
- Toxic dinoflagellates, which were mainly reported in tropical/subtropical regions, have recently been observed in temperate regions due to global warming (eg. Selina and Levchenko 2011; Pistocchi et al. 2011; Shah et al. 2013).
- However, in Korea, research on benthic dinoflagellates has primarily focused on the taxonomy of some toxic species. Most of these studies have concentrated on epiphytic dinoflagellates attached to seaweeds.
- Basic investigations, such as time-series monitoring of benthic dinoflagellates inhabiting the intertidal zones in Korea, have rarely been conducted. Consequently, there is a lack of methodologies and information on the species inhabiting these areas.

To aim

- 1. Establishing methodologies for investigating benthic dinoflagellates inhabiting intertidal zones.
- 2. This includes conducting a study on the species diversity and seasonal occurrence characteristics of benthic dinoflagellates in Jeju, a frontline region of climate change.

Sampling sites and periods

• Sampling station: Pyoseon Beach

• Sampling periods: Form January to November (2023)

Sampling and analysis methods

- At each sampling site, sand sediment samples were collected using a core sampler with a diameter of 4 cm and a length of 20 cm, sampling the top 5 cm of sediment.
- The collected sand sediment samples were sieved through a 100 µm mesh, and the filtered samples were fixed with Lugol's solution.
- The fixed samples were then examined under a light microscope to count the abundance and identify the species of dinoflagellates.
- Field measurements included seawater temperature, salinity, and sediment temperature. The moisture content of the sediment was also calculated.
- Additionally, seawater samples were filtered for nutrient analysis (N, P, Si).

Environmental factors

- The sediment temperature at the upper intertidal zone, where exposure time to air during low tide is longer, shows larger fluctuations.
- Regarding the moisture content, generally, the lower intertidal zone shows higher values, but station 2, where a waterway exists, shows notably high values.

Environmental factors

- **Tempearture range:** 15.2 29.4 °C
- **Salinity range:** 31.24 34.1 psu
- Montly average sediment temperature range
 - Upper inter tidal zone (UZ) : 12.4 32.5 °C
 - Middel intertidal zone (MZ) : 12.5-31.6 °C
 - Lower intertidal zone (LZ) $: 13.2 29.5 \,^{\circ}\text{C}$

- Nitrate and nitrite range : 0.89 23.56 µmol/L
- Ammonium range : 0.69 22.70 μmol/L
- Silicate range : 15.80 115.27 µmol/L
- Phosphate range : 0.08 1.43 µmol/L

Benthic microalgae abundance

- The average number of total microalgae inhabiting the intertidal zone was highest in June.
- Among the sampling stations, Station 2, influenced by freshwater inflow, showed a notably high abundance of microalgae.
- The high abundance at Station 2 resulted in significant variability in the monthly average abundance.
- Generally, there was an increasing trend until June, followed by a decrease.

Benthic microalgae species composition

3. Results and discussion

33.327-

33.325

33.329-

33 32

33.325

126.836

126.838

126.840

126.842

126.844

Longitude

 Regarding dinoflagellates, except for Station 2 in February, relatively high numbers and composition rates were observed in June.

Longitude

126,838

126,840

126.842

Occurrence species of benthic dinoflagellates

	Jan.	Feb.	Mar.	Apr.	Мау	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.		Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.
Adenoides eludens	+	++	++	++						+	+	Heterocapsa horiguchii			+	+		+					
Adenoides spp.		+	++	+								Heterocapsa psammophila	+	++	+		++	++	+			+	+
Aduncodinium glandula					++						+++	Heterocapsa spp.	++	++	++	++	++	++	++	++	++	++	++
Amphidiniopsis arenaria								+		+	+	<i>Karenia</i> spp.			+								
Amphidiniopsis cristata			+		+	+	+	+			+	Katodinium asymmetricum	++	++	++	++	++	+++	++	++	++	++	+
Amphidiniopsis elongata								+				Katodinium spp.	++	+	+	+	+	++	+				
Amphidiniopsis hexagona	+		+		++	+						Kryptoperidinium triquetrum											+
Amphidiniopsis ovalis											+	Prorocentrum bimaculatum								+			
Amphidiniopsis rotundata						+		+	++	+		Prorocentrum concavum					+						
Amphidiniopsis striata								+				Prorocentrum fukuyoi	+			+	+	+	+	+	+	+	+
Amphidiniosis swedmarkii							+			+	+	Prorocentrum glenanicum									+		
Amphidiniopsis spp.	+	+	+	+	+	+	+	+	++	++	++	Prorocentrum lima	+										
Amphidinium bipes			+	+	+					+	+	Prorocentrum micans						+++	+				
Amphidinium carterae	+						+					Prorocentrum spp.	++	++	+	+	+	+	++	++	+	+	+
Amphidinium gibbosum						+	+					Protoperidinium acutum						++					
Amphidinium herdmanii	+	++	+	+	+	+	+	+	+	++	+	Protoperidinium mite						+					
Amphidinium incoloratum					+	+		+	+			Protoperidinium pellucidum				+		+		+			
Amphidinium massartii	+	+	+	+	+	+	++	+		+	+	Protoperidinium spp.	+	+	+	+	+	++	++	+	+	+	+
Amphidinium operculatum											+	Psammodinium inclinatum		+	+		+						
Amphidinium steinii	+	+			+		+	+	+	+		Roscoffia capitata	+	+	+	+	+	+	+		+		
Amphidinium spp.	++	++	+	+	++	++	++	++	++	++	++	Roscoffia minor			+		+	+	+			+	+
Ankistrodinium armigerum											+	Roscoffia spp.		+	+		+	+				+	
Ankistrodinium semilunatum	+	+	++	++	++	++	++	++	++	++	+	Sc <i>ripps iella</i> spp.				+					+		
Ankistrodinium spp.								+	+			Sinophysis ebriola										+	+
Apicoporus parvidiabolii	+	+	++	++	++	+	+		++	++		Sinophysis grandis			+	+	+		+	+	+		+
Apicoporos spp.	++	++	++	+	++	++	++	++	++	+	++	Sinophysis microcephala	+	+	+	+			+			+	
Bispinodinium angelaceum	+											Sinophysis minima		+	+	+			+	+	+		+
Carinadinium ovatum		+	+			+		+	+			Sinophysis vespertilio									+		
Durinskia agilis			+	+	+						+	Sinophysis spp.											+
<i>Durinskia</i> spp.		+	+		++	++		+				Speroidium fungiforme	+					+					
Gymnodinium spp.	++	+++	+	+	+	+	++	+	+	++	+	Testudodinium corrugatum	+				+			+			+
Gy <i>rodinium</i> spp.	+	+	+	+	+		+	+	++	+	+	Testudodinium testudo		+					+				
Herdmania litoralis					+				+	+		Testudodinium spp.	+	+					+				
Herdmania spp.											+	Thecadinium kofoidii	+	++	+	+	+	+	+		+		+

• During the survey period, a total of over 68 species from 25 genera were observed, including 16 unrecorded species in Korea and 4 potentially toxic species.

The diversity of benthic dinoflagellates

- The RDA result shows that the composition rate of dinoflagellates had a positive correlation with moisture content and was temperature fluctuation of sediment after low tide.
- Additionally, there was a negative correlation with the dominant taxon, diatoms.

Summary and conclusion

- Through this study, ecological survey methodologies for benthic dinoflagellates were established.
- In 2023, a total of 68 species from 25 genera of benthic dinoflagellates were observed at Pyoseon Beach, Jeju Island. Major genera include *Amphidiniopsis*, *Amphidinium*, *Prorocentrum*, *Sinophysis*, and *Heterocapsa*.
- Species such as Amphidinium carterae, Amphidinium operculatum, Prorocentrum concavum, and P. lima were identified as potentially toxic species.
- composition rates of benthic dinoflagellates:
 - Positive correlation with sediment moisture content
 - > Negative correlation with dominant algal taxa such as benthic diatoms
 - > Negative correlation with temperature fluctuation of sediment after low tide
- In conclusion, fundamental information on the community dynamics of benthic dinoflagellates in response to seasonal marine environmental changes has been obtained.
- Since most dinoflagellates are mixotrophic or heterotrophic, future studies should consider other biological factors such as bacterial prey and factors related to DOM/POM.

Thank you!

<u>Q&A</u>