Data Integration Improves
Model Performance In a
Changing Climate

Nima Farchadi, Camrin D. Braun, Martin C.
Arostegui, Barbara A. Muhling, Elliott L. Hazen,
Andrew J. Allyn, Kiva L. Oken, Rebecca L. Lewison

NOAR O o080, 080,
g Ol :
] a® P 7 2 s o
v o e’ Gulf of Maine
Research Institute




Society increasingly faces novel conditions




Species distribution models (SDMs)
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Poor forecasts under novel conditions
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Data 1s rapidly changing




Rarely leverage various data

Spatial locations




Can 1ntegration improve forecasts?

Spatial locations Forecast under

Environmental variables




arine heatwaves (MHWs) in the North Paci
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i N Albacore Tuna
Fishery-dependent data

1. Vessel logbook (Troll & pole-and-
line fleet)
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Fishery-independent data

2. Archival Tags

Temporal extent: 1995 - 2019



Habitat envelope model (HE)
« Pooling approach

Data pooling
Covariates
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(Gaussian markov random field

model (GMRF)

« Pooling approach
« Seasonal random spatial fields
« 1.e. spatially explicit

Environmental covariates
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integrated species distribution
model 1ISDM)

« Jointly estimated environmental

parameters
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Retrospective forecasts

Train models Forecast
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Quantifying environmental novelty

Hellinger Distance

Difference between
two distributions

SSTs the model learned
from (1995 — 2013)

Prediction target SST



2 Dimensions of performance

Predictive Skill
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How well can the model predict
at new locations?

Ecological Realism
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How well do model-predicted

habitat suitabilities align with the
data?



Predictive skill and environmental novelty
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ggﬁ_ Ecological realism and environmental novelty
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Qﬁ_ Ecological realism and environmental novelty
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Habitat Suitability




Better Predictive Skill

Lessons learned

All models do well under low degrees of novelty

0.4 0.5 0.1 0.2

Hellinger Distance (Novelty)

Greater Novelty



Lessons learned

1. All models do well under low degrees of novelty

2. 1SDMs mitigate issues that are broadly attributed to a

model’s forecast ability
a. Overfitting

b. Accounting for biases for each data source



Future directions

. Utility of iSDMs as foundational tools for proactive
management and conservation

2. Exploring iSDM performance in other applications

a. Pair with operational forecasts products (e.g. SST)
b. Long-term projections
c. Data poor species

d Transferability across geographical space
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