Data Integration Improves Model Performance In a Changing Climate

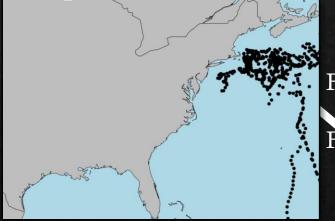
Nima Farchadi, Camrin D. Braun, Martin C. Arostegui, Barbara A. Muhling, Elliott L. Hazen, Andrew J. Allyn, Kiva L. Oken, Rebecca L. Lewison

SDSU

Society increasingly faces novel conditions

Species distribution models (SDMs)

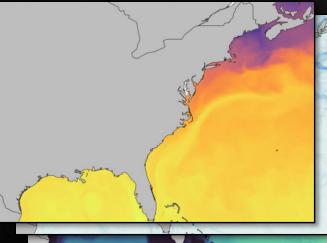
Species locations

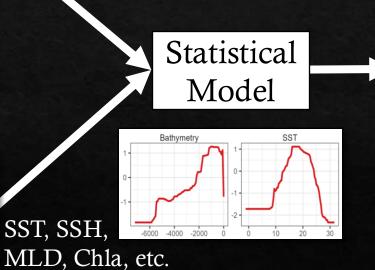


Fishery-dependent = fishing catch data

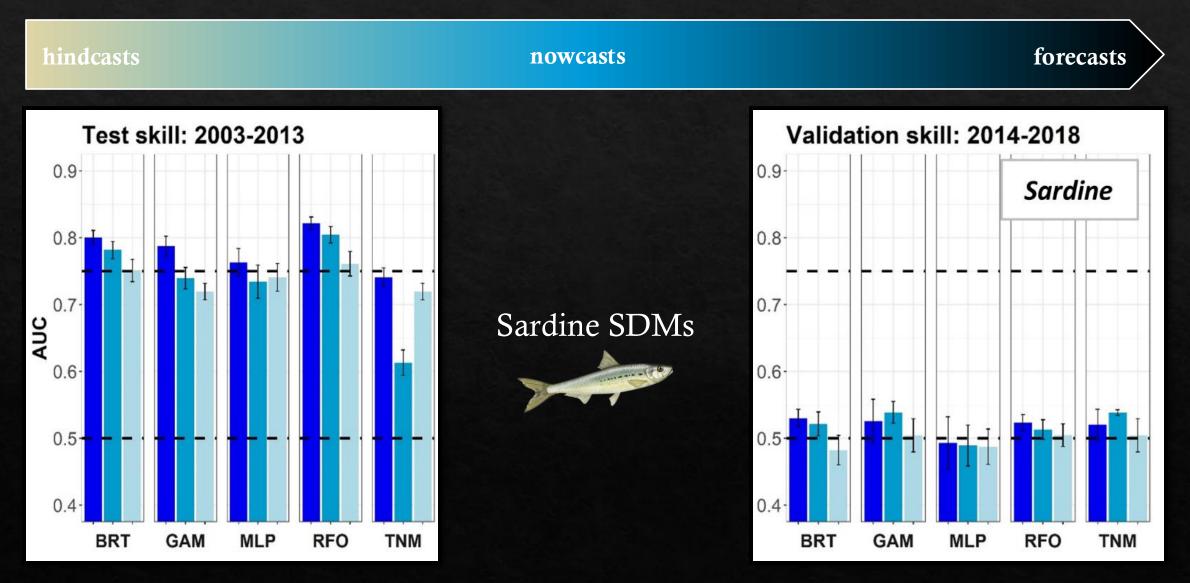
Fishery-independent = surveys, tagging data

Environmental variables





Poor forecasts under novel conditions

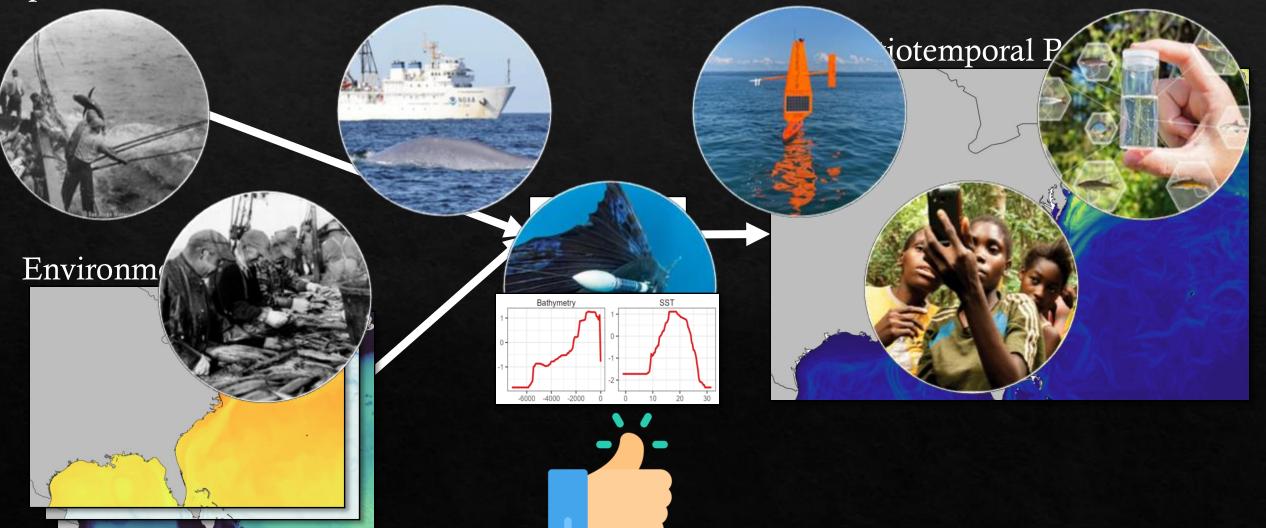


Muhling et al. 2020

Data is rapidly changing

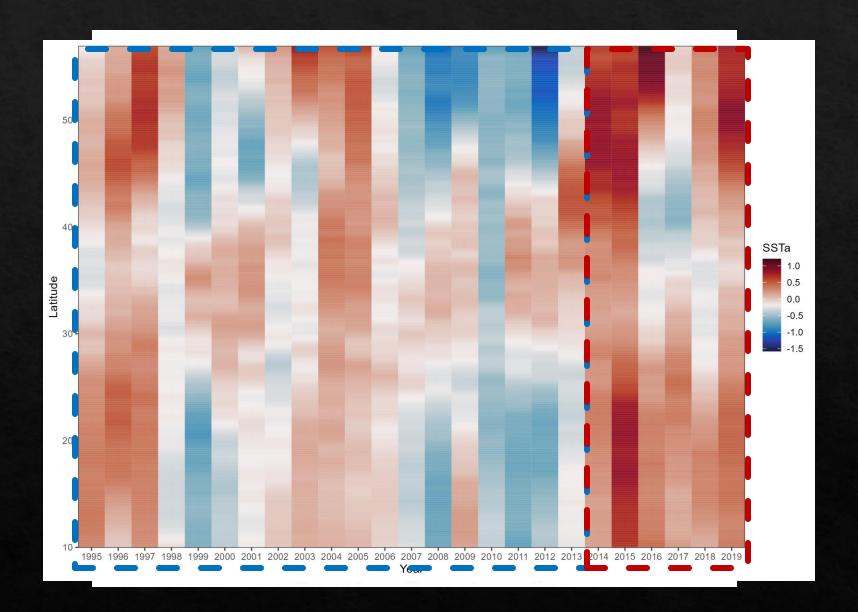
Rarely leverage various data

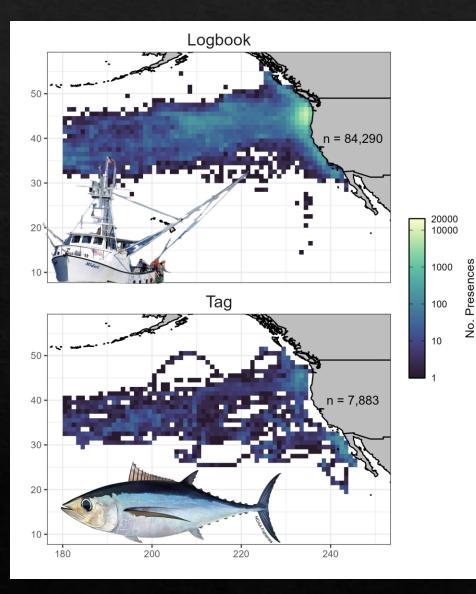
Spatial locations



Can integration improve forecasts?

Marine heatwaves (MHWs) in the North Pacific





Albacore Tuna

٠

•

Fishery-dependent data

1. Vessel logbook (Troll & pole-andline fleet)

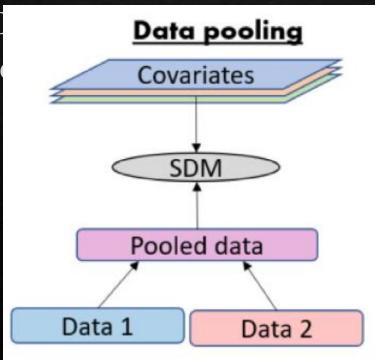
Fishery-independent data

2. Archival Tags

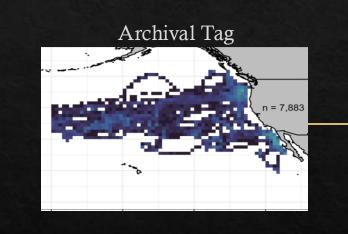
Temporal extent: 1995 - 2019

Habitat envelope model (HE)

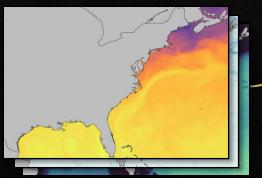
Pooling approach



it)



Environmental Data



HE

iSDM

Logbook

n = 84,290

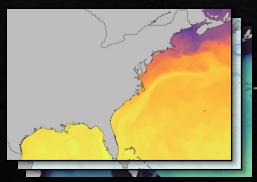
Gaussian markov random field model (GMRF)

- Pooling approach •
- Seasonal random spatial fields
 - i.e. spatially explicit ۲

Environmental covariates

$$y = x\beta + \omega_{winter} + \omega_{spring} + \omega_{summer} + \omega_{fall} + \epsilon$$

Environmental Data



HE

GMRF

iSDM

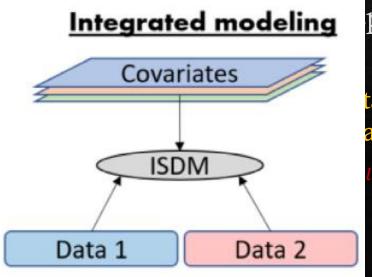


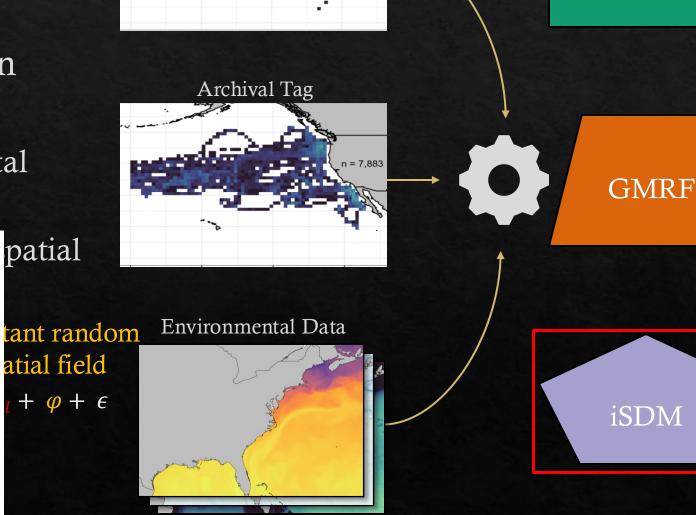
Archival Tag

= 84,290

integrated species distribution model (iSDM)

• Jointly estimated environmental parameters





= 84,290

HE

Logbook

Retrospective forecasts

Forecast Train models Latitude 30 20 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 201 1995 1996 1997 2006 2007

SSTa

1.0

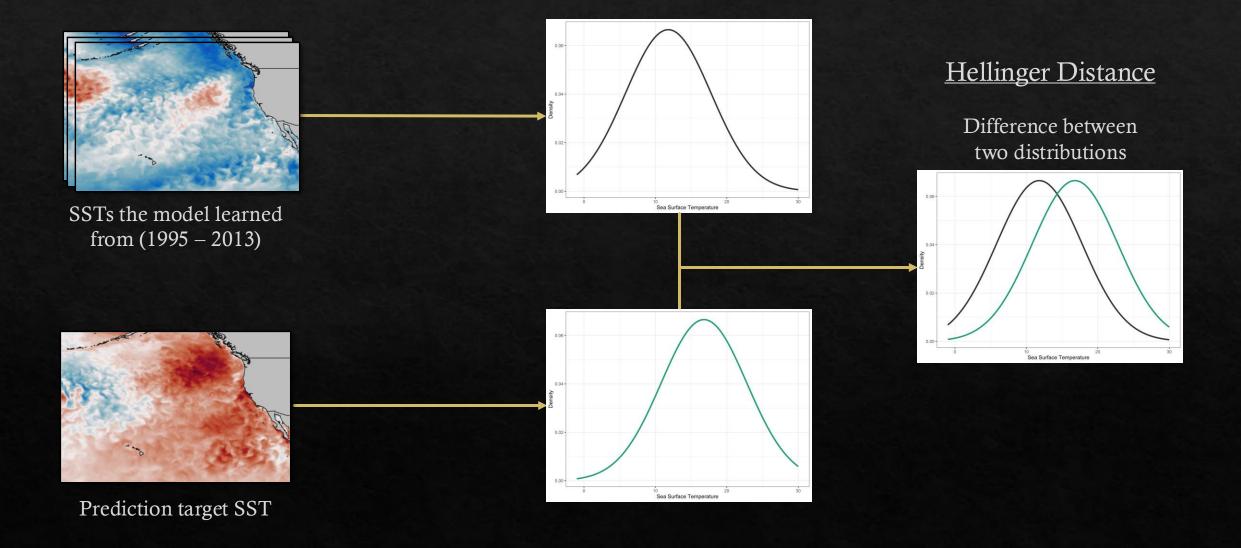
0.5

-0.5 -1.0

-1.5

MARCENSET MARKED MARKED

Quantifying environmental novelty



2 Dimensions of performance

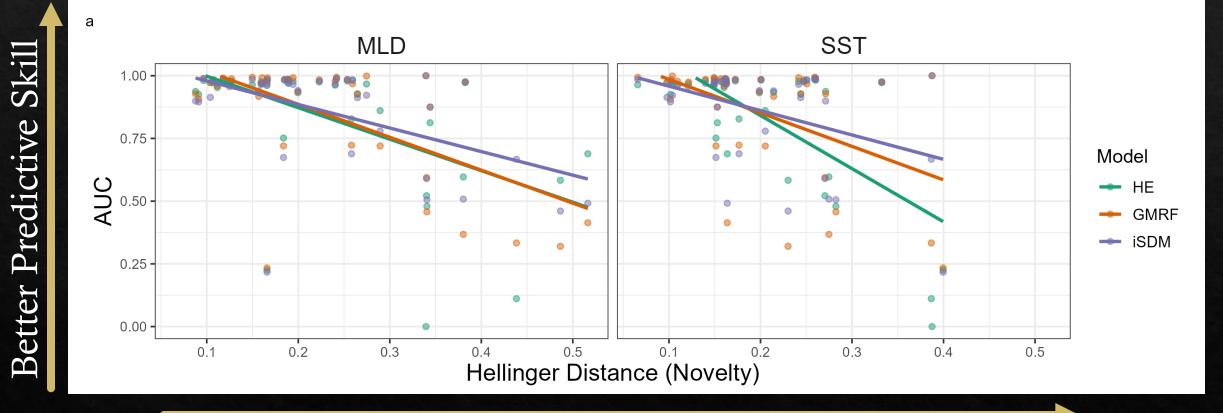
Predictive Skill

How well can the model predict at new locations?

Ecological Realism

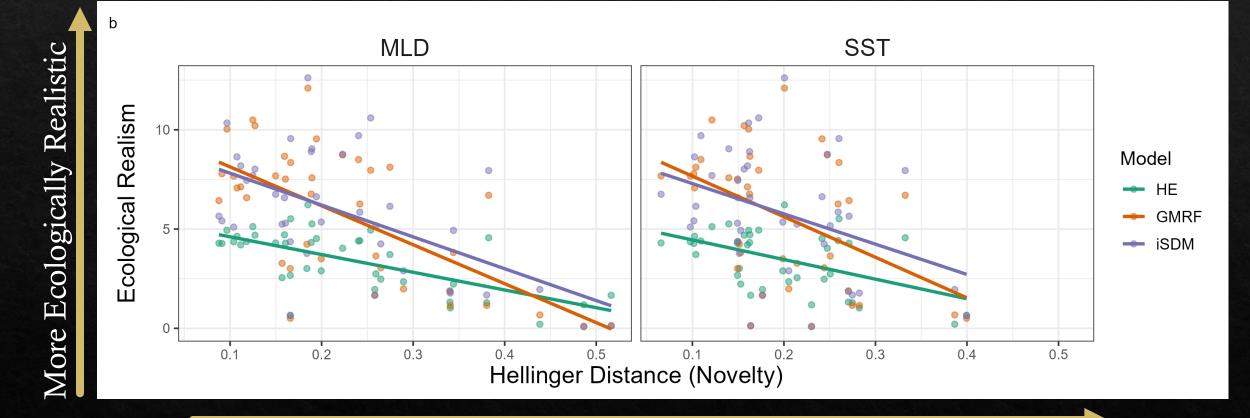
How well do model-predicted habitat suitabilities align with the data?

Predictive skill and environmental novelty



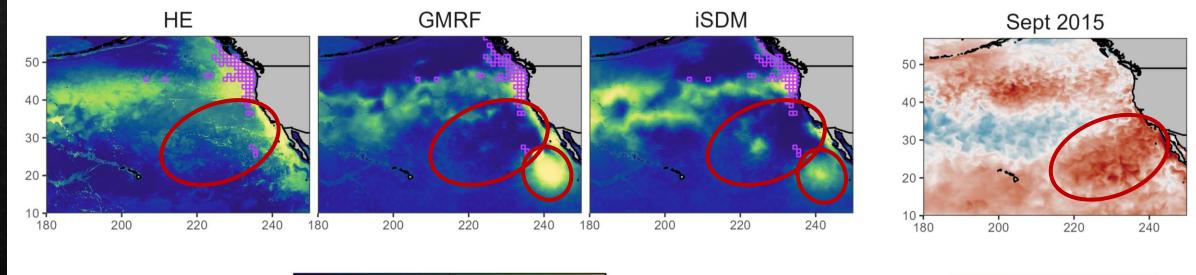
Greater Novelty

Ecological realism and environmental novelty



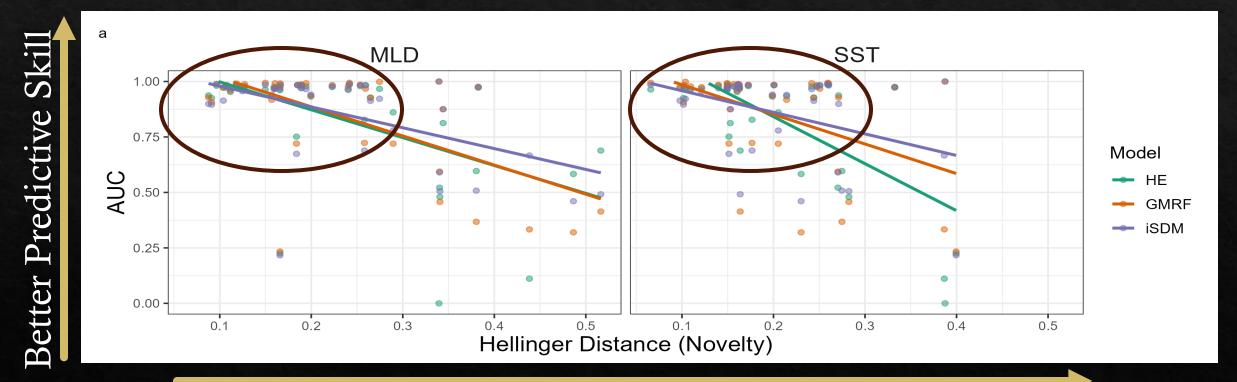
Greater Novelty

Ecological realism and environmental novelty



Lessons learned

1. All models do well under low degrees of novelty



Greater Novelty

Lessons learned

- 1. All models do well under low degrees of novelty
- 2. *iSDMs mitigate issues that are broadly attributed to a model's forecast ability*
 - a. Overfitting
 - b. Accounting for biases for each data source

Future directions

1. Utility of iSDMs as foundational tools for proactive management and conservation

2. Exploring iSDM performance in other applications

- a. Pair with operational forecasts products (e.g. SST)
- b. Long-term projections
- c. Data poor species
- d. Transferability across geographical space

Acknowledgements

People

- Rebecca Lewison
- Camrin Braun
- Martini Arostegui
- Barbara Muhling
- Elliott Hazen
- Andrew Allyn
- Kiva Oken
- Marissa Baskett
- Conservation Ecology Lab
- FaCeT Team

Data

- American Fishermen's Research Foundation
- American Albacore Fishing Association

Funding

- NOAA Sea Grant Population & Ecosystem Dynamics Fellowship
- PICES ECOP Travel Award

Sea Grant

