A Super Ensemble View of Krill and Climate Change in the California Current

Jerome Fiechter, UC Santa Cruz

Co-authors: M. Cimino, M. Messié, M. Jacox, M. Pozo Buil, J. Santora

Funding: U.S. National Science Foundation (NSF) U.S. National Oceanography and Atmospheric Admin. (NOAA)

Objectives

- Projecting climate change and variability of krill in California Current ecosystem
- Identifying uncertainty sources in projections (humans, krill)
- Quantifying future departure from present-day conditions

Multi-Model Krill Super Ensemble

3 downscaled projections

A Dynamically Downscaled Ensemble of Future Projections for the California Current System

Mercedes Pozo Buil^{1,2*}, Michael G. Jacox^{1,2,3}, Jerome Fiechter⁴, Michael A. Alexander³, Steven J. Bograd^{1,2}, Enrique N. Curchitser⁵, Christopher A. Edwards⁴, Ryan R. Rykaczewski⁶ and Charles A. Stock⁷

RCP8.5 High Emissions Scenario

- Low rate of warming (GFDL)
- Moderate rate of warming (IPSL)
- High rate of warming (Hadley)

3 Krill Model Formulations

NEMUCSC (NEM) Deterministic, Eulerian

Growth-Advection (GA) Determinisitic, Lagrangian

Species Distribution Model (SDM) Statistical, Eulerian

Multi-Model Krill Super Ensemble (9 Members)

Ensemble Means and Trends

ESM Projection Uncertainty (GFLD, IPSL, HADL)

Long-term Means, Trends, and Uncertainty

Leading Mode of Combined Variability (Krill + Environment)

Leading Mode: Krill Alongshore Patterns and Uncertainty

Synchronous variation in krill abundance with coastwide increases during colder, more productive periods (~45% of explained variance)

Leading Mode: Krill Temporal Variability and Uncertainty

Departure from Present Day Conditions: Emergence

Departure from present-day (2000-2030) conditions identified when trend exceeds 1 standard deviation from present-day mean

Departure from Present Day Conditions: Extremes

Fraction of years exceeding 2 standard deviations from present-day mean

Conclusions

- Different properties of krill dynamics are affected by different sources of uncertainty
- Stronger warming does not necessarily mean worse future for all krill models
- Even under high emissions scenario, climate change signal for krill will be obscured by strong interannual and decadal variability