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Climate impacts on ecosystems and people

Sagebrush shrub-
lands are becoming
non-native grasslands
as a result of wildfire,
invasive species, land

~ use, and climate
change.

Arctic marine 5=
ecosystems are being
altered by ocean
acidification and
harmful algal blooms.

Dry forests and
woodlands experienc- &=
ing drought and wildfire

are becoming grass-
lands and shrublands.

Coral reefs are being
lost due to warming and
ocean acidification.
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How to advance ecosystem-based fisheries
management under a changing climate?

) NOAA Fisheries

Ecosystem Based Fishery * Develop/monitor ecosystem reference points
NOAA Management Road Map

FISHERIES
Hesdqares * Identify nonlinear and nonstationary

deReynier, Harvey, Link, Morrison et al. 2024 pressures and ecological surprises

Climate Sci Strategy Objecti

* Provide early warning

 Minimize risk to resources, communities

Link, Griffis, Busch et al. 2015



Ecosystem thresholds
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Management pathways for ecosystem and climate information

2023-2024 CALIFORNIA CURRENT
ECOSYSTEM STATUS REPORT

A report of the NOAA California Current Integrated Ecosystem
Assessment Team (CCIEA) to the Pacific Fishery Management Council

Andrew Leising, Mary Hunsicker, Nick Tolimieri, Greg Williams, Abigail Harley

Ecosystem Status Report 2023
GULF OF ALASKA
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A risk table to address concerns external to stock assessments when
developing fisheries harvest recommendations

Martin W. Dorn and Stephani G. Zador




Outline

Ecosystem thresholds

» Simulation-based evaluation of a threshold

detection tool

Nonstationary change

» Tracking ecosystem-level trends and shifts

SCARLETTW.
YOUTH ENTRY, GRADE 12

POLYCHROMATIC CAST
(2023, WATERCOLOR)
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Evidence of ecological thresholds
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Landings (tons) social-ecological systems: A cross-regional comparison of fisheries in the
Large et al. 2013 ICES JMS United States

Perng et al. 2023

E.g. Samhouri et al. 2015, Tam et al. 2017, Boldt et al.
2021, Hunsicker et al. 2022 PICES WG36 Report



How to increase uptake of thresholds in management?

Sensitivity analyses of threshold models to time series length, missing
environmental info, observation error, etc. -> improve confidence

Simulation studies to demonstrate how incorporating thresholds in management
applications could improve knowledge of risk and uncertainty

ldentifying underlying mechanisms through which thresholds may or may not
arise can help inform management policies




Are threshold detection tools robust or not?

Raine Detmer, UCSB
NSF INTERN program

Generalized Additive Models (GAM)

« Simulations to explore how method
performs under various scenarios

« Several functional forms that differ in the
definition of threshold locations

+ Definition of ‘threshold’ that managers want
to avoid may depend on the shape of
relationship

Detmer et al. Ecosphere In revision

f(x)

True threshold:
min(f*(x))

s(x)

Statistical threshold:
min(s*(x))

Statistical
threshokd:
max(Is"(x))

s"(x)

x (driver)

Where slope of
s(x) is decreasing
most rapidly

X (driver)

Local optimum of s(x)

x (driver)

Where slope of
s(x) is changing
most rapidly




Are threshold detection tools robust or not?

Raine Detmer, UCSB
NSF INTERN program

Scenarios Troe fwachold:

min(f*(x))

(1) Number of data points (time series length)

f(x)

(2) Observation error of response

(3) Effect of a missing covariate e ihreahad tvaanold:

min(s”(x)) 10000
max(ls"(x

? o
\ 2
! -
w
X (driver) ’ x (driver) ' x (driver)
Wh_ere slope Qf Local optimum of s(x) Where slope of
s(x) is decrgasmg s(x) is changing
most rapidly most rapidly

Detmer et al. Ecosphere In revision



For each simulation scenario:

Simulation Steps 2) Fit full data 3) Jackknifing
1 o % . < 1
o of —
1) Simulate data 4) Repeat steps 1-3
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Jackknife resampling to evaluate robustness of each detected threshold existence and location

True and false positive rates were also calculated
Detmer et al. Ecosphere In revision



GAMs generally performed best when time series were long

Sigmoidal
Time series length
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Sample sizes represent the number of simulations that
detected a threshold, out of a total of 100 replicates

Detmer et al. Ecosphere In revision



GAMs generally performed best when observation error was low

Time series length Observation error
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GAMs generally performed best when covariates were accounted for

No cov No cov
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- Effects of factors held up across the functional forms
- Bias toward risk adverse side indicates low risk of mistakenly concluding
a threshold lies far on the undesirable side of its true value

Detmer et al. Ecosphere In revision



True positive rates were highest for long time series and low observation error

Time series length Observation error
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False positive rate

TPRs = fraction of simulation replicates that detected a threshold when one existed



False positive rates were generally low across parameter combinations

Time series length Observation error
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False positive rate

FPRs = fraction of simulation replicates that detected a threshold
when true relationship was linear



Are threshold detection tools robust or not?

* GAMs generally performed best with long time series, low observation error,
and covariates accounted for

- Direction of bias was generally towards risk-averse side of threshold -> low
risk of mistakenly concluding a threshold lies far on the undesirable side of its
true value

» Detectability depended on shape of relationship and definition of the threshold
location

« Other factors to consider: temporal and/or spatial autocorrelation,
nonstationarity, more complex driver-response-covariate relationships



Outline

Ecosystem thresholds

» Simulation-based evaluation of a threshold

detection tool (GAM)
Nonstationary change

» Tracking ecosystem-level trends and shifts

ANANYA A.
YOUTH ENTRY, GRADE 9

A DESPERATE OCEAN
(2023, ACRYLIC)
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Developing ecosystem state indicators: Gulf of Alaska

Bridget Ferriss

NOAA AFSC
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Annual synthesis of marine ecosystem conditions to inform fisheries management



Developing ecosystem state indicators: Gulf of Alaska

Bridget Ferriss
NOAA AFSC

Ecosystem Status Report 2023
GULF OF ALASKA

May provide early detection of ecosystem-level changes



Ecosystem state indicators for NE Pacific ecosystems

Identify shared trends among time series that are useful as indices

Detect changes in mean ecosystem state

Distinguish normal variability from changes signaling a major shift

Progress in Oceanography
Volume 186, July 2020, 102393

ELSEVIER

PLOS CLIMATE

Tracking and forecasting community responses to climate
perturbations in the California Current Ecosystem
Hunsicker et al. 2022

Evaluating ecosystem change as Gulf of
Alaska temperature exceeds the limits of
preindustrial variability ~ Litzow et al. 2020



Methods

0.2

» Dynamic Factor Analysis (MARSS R package,
Holmes et al. 2012)
o Identify latent 'trends’ that may be useful as
environmental indices

N‘ (m" “ &%&Q%}Q’?M

i \*W il ‘\‘W'ﬁ

Data

» Hidden Markov Models (hmmTMB R package,
Michelot and Glennie 2023)
o Estimate underlying state at any point in time
o Estimate means and variances in the response
in each state
o Estimate probability of state transitions

Response
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Time



Seabird (13,10)
Reproductive success
Hatch date

Mid-trophic (8,8)
Forage fish abundance
Shrimp abundance
Jellyfish abundance
Juvenile salmon

Lower trophic (10,9)
Chl-a
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Climate (12,10)

SST (seasonal)
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Time series ranged from 25 to 52 year in length, all ending in 2022




One common trend identified in EGOA climate variables
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One common trend identified in WGOA climate variables

Trend
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State transitions largely aligned with previous observations (1977,1988,2014)

Trend
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Trend
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Two common trends identified in EGOA biology variables
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One common trend identified in WGOA biology variables
m== Eastern GOA T
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Trend
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Mid-trophic
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Useful for communication and identifying redundant indicators



Using Hidden Markov Models to develop ecosystem indicators from
non-stationary time series Cassin’s auklet

Zoe R. Rand ™', Eric J. Ward ", Jeanette E. Zamon ¢, Thomas P. Good ", Chris J. Harveyb ~
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Forecast ecosystem state to help inform management decisions

Forecast Inf_orm Assessment,
ecosystem recruitment, monitoring,
state survival, etc. risk

Ocean
forecasts

Survey

i Indicators




How can we implement this information into management?

Ecosystem Status Report 2023

« Annual production of common trends and ecosystem ~ GULF OF ALASKA
state can streamline communication

« Operationalizing these tools in the management of GOA
Is achievable by building on existing frameworks

* These tools can provide ecosystem support to
management decisions relative to groundfish productivity
and resulting harvest specifications

© Benchmark assessment in 2016 inchuded CIE recomemendations 19 1) account for whale depredation on
the survey and fivhery. snd 2) propagate more structusal uncertainty of management quartites




Collaborators

Ecosystem thresholds

Kelly Andrews
Michele Conrad
Elliott Hazen
Kirstin Holsman
Julia Indivero
Scott Large
Mike Malick

Kristin Marshall
Stuart Munsch
Kiva Oken

Will Satterthwaite
Kalei Shotwell

Andrew Thompson

Non-stationary change

Mike Litzow
Lauren Rogers
Matt Callahan
Wei Cheng

Seth Danielson
Brie Drummond
Emily Fergusson

Christine Gabriele

Kyle Herbert
Russ Hopcroft
Emily Lemagie
Jens Nielsen

Kally Spalinger

William Stockhausen

Wes Strasburg

Shannon Whelan



Thank you!

adetmer@ucsb.edu
bridget.ferriss@noaa.gov
mary.hunsicker@noaa.gov
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