

NOAA FISHERIES

Northwest Fisheries Science Center Evaluating climate-robust management strategies for environmentally-driven recruitment in transboundary fisheries: avoiding tipping points for Pacific Hake

> Kristin Marshall, Aaron Berger, Kelli Johnson, Eric Ward, Nick Tolimieri, Mary Hunsicker, Michael Jacox, Mercedes Pozo Buil

> > 29 October 2024 PICES Annual Science Conference

Challenge: match spatiotemporal scale of predictions and models to management needs

How to operationalize research on drivers of recruitment for use in fisheries management?

Pacific Hake: dynamic and transboundary

Managed under international treaty between US and Canada

Variable migration and recruitment with links to ocean conditions

Hake MSE goal: evaluate the performance of alternative hake MPs under current and future environmental conditions

Climate change-induced movement scenarios

Conceptual scenarios suggests northward distribution shift could increase risk of fishery closures, but effects of **high recruitment variability** dominate effects of distribution shifts

Jacobsen et al. 2022. ICES JMS.

Challenges to operationalizing

- 59% variability explained with 5 indicators
- Linear relationships only
- Some estimated in opposite direction of hypothesis
- Model fit and validated in 1980-2010

Validating recruitment prediction with new approaches

'Big data' non-mechanistic approach (methods in Ward et al. 2023)

Compare multiple model types

Univariate and multivariate

Performance based on in-sample and out-of-sample prediction skill

001 40 4444 /6-640050	Accepted: 22 May 2024 Accepted: 2 J	July 2024		
JOI: 10.1111/1al.12650	_	FISH and FISHERIES	WILEV	
ORIGINAL ARTICLE				
l everaging eq	cological indicate	ors to improve short term		
forecasts of f	ish recruitment			
Eric J. Ward ¹ N	1ary E. Hunsicker ² 💿	Kristin N. Marshall ³ Kiva L. Oken ³		

Potential operational indicators for hake recruitment

- Hake life-history informed ROMS variables (Vestfals et al. 2023)
- Ecosystem-state ROMS variables (Hunsicker et al. 2022)
- Survey time series of early life history stages
 - Larval fish (CalCOFI, 1985-2020)
 - Juvenile fish (RREAS, 1988-2018)

Within-sample prediction skill

Hake-specific ROMS and larval survey perform well

Better performance with ROMS indicators supported by mechanistic hypotheses than naïve ROMS

GAMs reduced number of indicators needed for higher performance

Validate with out-of-sample prediction skill

- Age-0 recruitment deviation prediction
- Moving window one year out of sample prediction
- Hake-specific ROMS or GLORYS variables
- Performance measured as reduction in RMSE compared to a null model, over 5 or 10 forecasts

Skill in 5- and 10-year forecast windows

- Shorter forecast period shows higher skill but less variability explained in training period
- Sensitivity of indicators to assignment of testing/training years
- Tradeoffs between forecast skill and within sample R²
- Similar results with ROMS or GLORYS

Most highly skilled forecasts

Indicators include: Temperature/degree days Upwelling (BEUTI) Alongshore transport Cross-shelf transport

Next steps

• MSE: Develop recruitment projections from ROMS (Pozo Buil et al. 2021)

Assessment: Use indicators that perform well to test in assessment and/or risk table

🖤 NOAA FISHERIES

Conclusions

- Species- and life-history based ROMS/GLORYS indicator selection method validated
- Ecosystem indicators (larval stages) may be useful for hake age-0 recruitment prediction
- Recommend skill metrics and out-of-sample forecast windows that match intended operational use
- Need to adapt our expectations for stable/stationary statistical relationships between ocean indicators and recruitment variability

Test robustness of

Funding: NWFSC internal grants, annual project prioritization, and CCIEA program

Collaborators: Eric Ward, Megan Feddern, Mary Hunsicker, Kiva Oken, Aaron Berger, Kelli Johnson, Cathleen Vestfals, Mike Jacox, Mercedes Pozo Buil, Nick Tolimieri, Chris Grandin, Pacific Hake/Whiting Treaty MSE working group kristin.marshall@noaa.gov

