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Machine learning was not designed for 
ecological data sets.

Ecological data has:

- Missing points or 

blocks of data

- Short data sets (few 

observations)

- Autocorrelation 



And yet, machine learning can be 
incredibly useful.

- Make predictions 
where traditional 
statistical models 
struggle

- Pick up non-linear 
relationships

Rubbens, P. et al. 

"Machine learning in marine ecology: an overview of techniques and applications." ICES 

Journal of Marine Science 80.7 (2023): 1829-1853.



Is machine learning for forecasting 
usable with problematic data sets?

- With caution and an eye for detail

- This talk covers adaptations for forecasting 
using ecological data with machine learning 
that are broadly applicable. 

- Example using random forest methodology 
to make catch forecasts for the California 
market squid fishery (Doryteuthis 
opalescens)

- Additional details are published: Allen 
Akselrud (2024) in Fisheries Research. 



Roadmap

- Start your engines: basics of random forest methodology

- Wrong turn: thoughtful failures

- Course correction: fixing problems from ecological data

Detour into the forest: understanding how random forests 

grow

- Pitstop: apply to real data

- Cruise control: how methods changes improve results

- Destination: takeaways
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Basics of random forest methodology
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Getting a 
different answer 

every time:
sparse data

2

Epistemic 
uncertainty

Overfitting

Thoughtful failures: what went wrong?

1
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Thoughtful failures: what went wrong? 
Overfitting

Data must be split 
temporally, rather 
than randomly.
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Improving the methods: Overfitting 
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Thoughtful failures: what went wrong? 
Sparse data

hyperparameter 
tuning
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What is a random forest regression?

An ensemble of regression trees with
3 hyperparameters:
➢How many data points per branch?
➢How many features per tree?
➢How many trees?
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How do you grow a tree?

There is some 
minimum number 

of data points,  
below which you no 

longer create 
branches
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How many features? 
A random selection with a minimum
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How many trees?

Ehrlinger, J., 2015. ggrandomforests: 
Visually exploring a random forest for 
regression. arXiv preprint 
arXiv:1501.07196.

Sparse data and non-optimal tuning
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Hyperparameter tuning

Minimum number of data points per branch
Minimum number of features per tree
Number of trees

Tuning:
➢ Over every possible combination 
➢ Over an optimal set of combinations (without 

repeats) – maximum entropy 
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Improving the methods: Model selection

What metric do we use to select for the best set of 

hyperparameters?

➢ Depends on your question

➢ In forecasting, we want the most precise prediction, so 

we may use:
○ Root mean squared error (RMSE)

○ Mean squared error (MSE)

○ Mean absolute error (MAE)

○ Ratio of performance to deviation (RPD)

➢ For model fit, R2 is typically used
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Improving the methods: Epistemic 
uncertainty

Re-run the 
tuned model 
multiple times 
to get your 
predictive 
range
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Improving the methods

Hyperparameter 
tuning

Uncertainty

Data structuring
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Application to fisheries: California market squid
➢ 3 plausible life 

history strategies

➢ Observational data

➢ Environmental data

➢ 6 model 
configurations (3x2): 
life histories with or 
without environment
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Results of methodological improvements
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Results of methodological improvements
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Future work

➢ Simulation study over more problems with 

ecological data

➢ The implications of applying better practices (or 

failing to) for each type of data problem

➢ Come chat with me if you have suggestions…
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Takeaways

“The increased flexibility and accessibility of random 

forest methods does not mean that they can be blindly 

applied to any kind of data without caution” 

(Boulesteix et al., 2012).
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Hyperparameter 
tuning

Uncertainty

Data structuring

Takeaways



Thank you for your 
time and attention!

Please feel free to get in touch with me:

Caitlin Allen Akselrud

caitlin.allen_akselrud@noaa.gov
text/call: 858-546-5613

For more details, please see: 
Akselrud, C.I.A., 2024. Random forest regression models in ecology: 

Accounting for messy biological data and producing predictions with 
uncertainty. Fisheries Research, 280, p.107161.
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