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Machine learning was not designed for
ecological data sets.

Ecological data has:

- Missing points or
blocks of data

- Short data sets (few \
observations) N

- Autocorrelation




incredibly useful.

- Make predictions
where traditional
statistical models
struggle

- Pick up non-linear
relationships

Rubbens, P. et al.

Journal of Marine Science 80.7 (2023): 1829-1853.
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"Machine learning in marine ecology: an overview of techniques and applications." ICES



Is machine learning for forecasting

usable with problematic data sets?
With caution and an eye for detail

This talk covers adaptations for forecasting
using ecological data with machine learning
that are broadly applicable.

Example using random forest methodology

to make catch forecasts for the California
market squid fishery (Doryteuthis OBVIOUSLY, YES
opalescens)

Additional details are published: Allen "/ NOAA
Akselrud (2024) in Fisheries Research.




Roadmap

Start your engines: basics of random forest methodology
Wrong turn: thoughtful failures
Course correction: fixing problems from ecological data

Detour into the forest: understanding how random forests

grow
Pitstop: apply to real data
Cruise control: how methods changes improve results |
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Basics of random forest methodology
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Thoughttul failures: what went wrong?
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Thoughtful failures: what went wrong?
Overfitting
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Improving the methods: Overtfitting
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Thoughtful failures: what went wrong?
Sparse data
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: An ensemble of regressmn trees with
<. 3 hyperparameters:

> > How many data points per branch?
. > How many features per tree?

‘%% > How many trees"
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* How'many trees?
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Hyperparameter tuning

Minimum number of data points per branch
Minimum number of features per tree
Number of trees

Tuning:

= Qver every possible combination

~ Over an optimal set of combinations (without
repeats) - maximum entropy

i NOAA
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Improving the methods: Model selection

What metric do we use to select for the best set of
hyperparameters?

>~ Depends on your question

~ In forecasting, we want the most precise prediction, so

we may use:
Root mean squared error (RMSE)

Mean squared error (MSE)

Mean absolute error (MAE)

Ratio of performance to deviation (RPD)

0O O O O

@, NOAA
= For model fit, R? is typically used @ bAoA
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Improving the methods: Epistemic
uncertainty
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Improving the methods
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~ 3 plausible life
history strategies

~ Observational data

~ Environmental data

-~ 6 model
configurations (3x2):
life histories with or
without environment

<
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Results of methodological improvements

Random forest prediction skill
Percent of predictions within a category

Life history El}zgl?ﬁ;lsm Good Fine Poor
Short Yes 44 33 22
Short No 48 33 19
Medium Yes 41 37 22
Medium No 41 33 26
Long Yes 44 22
Long No 41 30

.-"ﬁ”."‘
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Results of methodological improvements

Epistemic uncertainty for each model configuration

Life History Eqvirmnnent Minimum Maximum 4 _RMSE )
included RMSE RMSE difference
Short Yes 24 .01 2541 1.39
Short No 23.89 2728 |0 339
Medium Yes 24.01 26.39 2.38
Medium No 27.00 3009 [ 309
Long Yes 23.88 26.04 2.16
Long No 26.61 2863 | 202

&% NOAA
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Future work

~ Simulation study over more problems with
ecological data

~ The implications of applying better practices (or
failing to) for each type of data problem

~ Come chat with me if you have suggestions...
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Takeaways
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Takeaways
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Thank you for your
time and attention!

Please feel free to get in touch with me:
Caitlin Allen Akselrud

caitlin.allen_akselrud@noaa.gov
text/call: 858-546-5613

For more details, please see:
Akselrud, C.1.A., 2024. Random forest regression models in ecology:
Accounting for messy biological data and producing predictions with
uncertainty. Fisheries Research, 280, p.107161.
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