Random forest regression models in ecology: Accounting for messy biological data and producing predictions with uncertainty

Caitlin I. Allen Akselrud

NOAA Southwest Fisheries Science Center, Fisheries Stock Assessment

University of Washington, PhD Candidate

Machine learning was not designed for ecological data sets.

Ecological data has:

- Missing points or blocks of data
- Short data sets (few observations)
- Autocorrelation

And yet, machine learning can be incredibly useful.

- Make predictions where traditional statistical models struggle
- Pick up non-linear relationships

Rubbens, P. et al.

"Machine learning in marine ecology: an overview of techniques and applications." ICES Journal of Marine Science 80.7 (2023): 1829-1853.

Is machine learning for forecasting usable with problematic data sets? With caution and an eye for detail

- This talk covers adaptations for forecasting using ecological data with machine learning that are broadly applicable.
- Example using random forest methodology to make catch forecasts for the California market squid fishery (*Doryteuthis opalescens*)
- Additional details are published: Allen Akselrud (2024) in *Fisheries Research*.

Roadmap

- Start your engines: basics of random forest methodology
- Wrong turn: thoughtful failures
- Course correction: fixing problems from ecological data
 Detour into the forest: understanding how random forests
 grow
- Pitstop: apply to real data
- Cruise control: how methods changes improve results
- Destination: takeaways

Basics of random forest methodology

Thoughtful failures: what went wrong?

NOAA FISHERIES

Page 8 U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service

Thoughtful failures: what went wrong? Overfitting

Data must be split temporally, rather than randomly.

Improving the methods: Overfitting

Year	1	2	3	4	5	6	チ	8	9	10	11
Fold 1	Analy	jsís	Assess								
Fold 2											
Fold 3											
Fold 4											
Fold 5											
Fold 6											
Fold 7											
Fold 8											
Fold 9											

Thoughtful failures: what went wrong? Sparse data

What is a random forest regression?

An ensemble of regression trees with
3 hyperparameters:
> How many data points per branch?
> How many features per tree?
> How many trees?

How do you grow a tree?

Feature 1 There is some Feature Feature minimum number n = 20 of data points, below which you no Feature n = 11 longer create branches

How many features? A random selection with a minimum

All your data	Tree 1	Tree 2	Tree 3	Tree 4	Tree 5	Tree 6
Feature 1						
Feature 2						
Feature 3						
Feature 4						
Feature 5						
Feature 6						
Feature 7						
Feature 8						

How many trees?

Ehrlinger, J., 2015. ggrandomforests: Visually exploring a random forest for regression. arXiv preprint arXiv:1501.07196.

Sparse data and non-optimal tuning

Hyperparameter tuning

Minimum number of data points per branch Minimum number of features per tree Number of trees

Tuning:

- Over every possible combination
- Over an optimal set of combinations (without repeats) – maximum entropy

Improving the methods: Model selection

What metric do we use to select for the <u>best set</u> of hyperparameters?

- Depends on your question
- In forecasting, we want the most precise prediction, so we may use:
 - Root mean squared error (RMSE)
 - Mean squared error (MSE)
 - Mean absolute error (MAE)
 - Ratio of performance to deviation (RPD)

For model fit, R² is typically used
 U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service

Improving the methods: Epistemic uncertainty

Re-run the tuned model multiple times to get your predictive range

Improving the methods

Application to fisheries: California market squid

- 3 plausible life history strategies
- Observational data
- Environmental data
- 6 model configurations (3x2): life histories with or without environment

Results of methodological improvements

Random forest prediction skill Percent of predictions within a category							
Life history	Environment included	Good	Fine	Poor			
Short	Yes	44	33	22			
Short	No	48	33	19			
Medium	Yes	41	37	22			
Medium	No	41	33	26			
Long	Yes	33	44	22			
Long	No	30	41	30			

Results of methodological improvements

Epistemic uncertainty for each model configuration							
Life History	Environment included	Minimum RMSE	Maximum RMSE	RMSE difference			
Short	Yes	24.01	25.41	1.39			
Short	No	23.89	27.28	3.39			
Medium	Yes	24.01	26.39	2.38			
Medium	No	27.00	30.09	3.09			
Long	Yes	23.88	26.04	2.16			
Long	No	26.61	28.63	2.02			

Future work

- Simulation study over more problems with ecological data
- The implications of applying better practices (or failing to) for each type of data problem
- Come chat with me if you have suggestions...

Takeaways

"The increased flexibility and accessibility of random forest methods does not mean that they can be blindly applied to any kind of data without caution" (Boulesteix et al., 2012).

Thank you for your time and attention!

Please feel free to get in touch with me: Caitlin Allen Akselrud caitlin.allen_akselrud@noaa.gov text/call: 858-546-5613

For more details, please see: Akselrud, C.I.A., 2024. Random forest regression models in ecology: Accounting for messy biological data and producing predictions with uncertainty. Fisheries Research, 280, p.107161.

