A deep learning-based method to identify and count small pelagic and mesopelagic fishes from trawl camera images

Vaneeda Allken

30th of October 2024

PICES 2024

Institute of Marine Research (Norway)

Ensure sustainable harvest of marine resources in Norway

Main activities

- Monitoring
- Research
- Advisory work

Provide yearly quotas to fisherman

Norwegian sea: Dominant pelagic stocks

Norwegian spring-spawning herring (Clupea harengus)

Most abundant fish stock in the semi-pelagic water masses in the northeast Atlantic

Blue whiting (Micromesistius poutassou)

bottom

Northeast Atlantic mackerel is found in a huge area extending from the Iberian Peninsula in the south to the northern Norwegian Sea up to Svalbard in the north. Mackerel is a fast-swimming schooling pelagic fish, and feed on a variety of zooplankton and small fish

SSB of dominant pelagic stocks since 1980

Estimated spawning stock biomass for Norwegian spring-spawning herring (red), mackerel (purple) and blue whiting (blue)

Estimated year-class size at recruitment for Norwegian spring-spawning herring, mackerel and blue whiting

Acoustic trawl survey

Acoustic data

Trawl sampling

Deep Vision in trawl surveys

Automate image classification

- Images at 100 ms interval
- Millions of images
- Need for automation

Dealing with limited annotated data

Model performance: image classifier

- Classification model ٠
- Training dataset:

 5000 synthetic images
 70 real images
- per species

- Accuracy on test dataset: 94 % _

	Blue whiting	0.966	0.020	0.014
Confusion matrix	Herring	0.034	0.890	0.077
	Mackerel	0	0.026	0.974
(SUMMER)	Blue	whiting H	erring N	ackerel

Marine Science	CIEM
CEN lowing) of Marma Science (1014), doi:10.1003/science/10147	
Fish species identification using	a convolutional neural network
trained on synthetic data	
Vaneeda Aliken ¹ *, Nih Olav Handegard ¹ , Shale Ri Ketil Malde ¹³	osen ¹ , Tiffanie Schreyeck ² , Thomas Mahiout ² , and
Testilisti ql'Marine Resarch, F.O. Bas 10/0 Handins, H.S.O. Berger, Ro. Dispertment ql'Appliel Michaestas and Hosking, Polyach Non-Syde Department ql'Application, Similarity ql'Berger, P.O. Bas 2015, N.S.O.I.	renty In P.O. Box Tel, 00003 Sighter Antipude Codita, Noreco Berger, Norway
"Grouppendag author: Fel (++47) 35 23 45 Htt a read consulagity.com	
Allion, V. Handegard, N. O., Rosen, S., Schreynth, T., Mahraut, T. and A retreask transed on probabile data. – ICES Journal of Marine Sciences, &	Adde: X. Fob species devotes along a consolicitional rescal at 30.1016/commuterial.
Animal District D18 month lagentile 2018, accord 4 lagentile	
anisatio signal to species or species process as a challenge and memory viao tic data sharements impact than the second memory based on the time of rack proce- relatig and display is deep barring neural network to autoritate the class anisotic To termsky the scatta of aroung data, we developed a to- nel advend a challenge in a size of the time and the species data advended a challenge memory and there is no sing spectrum data.	d cannot spearen have here dowliged is suggest transportations of across dowling involvement of the parameter of speares of speares. Here, we do Acates of speares present in straiges from the Dargo Vision tonic satismis straining regime based on modelic simulation of Dargo Vision insign. We go will Adress's character down and accounting speares insultations is a local-top retigene the of too communic lack of straining data.
Repeated a most court servery deep learning. Sub-image classification	n machine learning, most carrants
Introduction Instatution explositions of mapping multitering of the marker en- istemance, Americk shared surveys (Malcanasa and Immunoli, Marker and Marker and Marker Malcanasa and Immunoli, Marker and Marker and Marker Malcanasa and Immunoli Marker and Marker and Marker Marker and Marker and Marker (Malcanasa), Marker and Marker and Marker and Marker (Malcanasa), Marker and Marker and Marker and Marker Marker and Marker and Marker and Marker and Marker Marker and Marker and Marker and Marker and Marker Marker and Marker and Marker and Marker and Marker (Marker and Marker and Marker and Marker and Marker (Marker and Marker and Marker and Marker and Marker (Marker Marker and Marker and Marker and Marker and Marker (Marker Marker and Marker and Marker and Marker and Marker Marker Marker and Marker and Marker and Marker and Marker Marker Marker and Marker and Marker and Marker and Marker (Marker Marker and M	The Damp Vision Disastent Damp Vision 40, Brugats, Narwath re- true linear and Dala. 2017 (Ugune 11 baseds for tabel and provide a high solution antencopic series channels, checker, i ba- series and the solution of the solution of the solution in the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the fact that the solution of the solution of the solution of the fact the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of the solution of

CRIMAC

Adapting model to new datasets

Drop of around 40% in accuracy when tested on new dataset (from 94% to 53%)

Performance does not generalise across datasets

Image from 2017

Image from 2018

Options

- Combine data from 2017 and 2018 and train network on the larger combined dataset
- Finetune model trained on 2017 dataset on data from 2018

Idea

- Step 1: Develop fish detection model
- Step 2: Deploy for automatic counting (?) /species distribution
- Step 3: Open cod-end. We (and fish) live happily ever after

Building the datasets

- 1879 annotated images from 2017 and 2018 surveys
- Generated 20000 synthetic images from 343 "real" images
 - Composition of synthetic training dataset:
 - Random
 - Reflect composition of real images
 - 4000 of each fish species
 - Blue whiting
 - Herring
 - Mackerel
 - Mesopelagic fish
 - 4000 mixed species images

Manually annotating fish for object detection

Allken V., Rosen S., Handegard N. O., Malde K. 2021. A real-world dataset and data simulation algorithm for automated fish species identification. Geoscience Data Journal, 00: 1–11, https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/gdj3.114

Object detection model: Model performance

per species

- Object detection model (RetinaNet)
 - Best training dataset
 - 20000 synthetic images
 - 652 real images
 - Performance on test dataset
 - Best mAP = **0.85**

		Ó	343	404 Numbe	453 r of real	528 images	590	652
	0 -	nan	0.717	0.730	0.753	0.764	0.778	0.789
Numbe	5000 (D1) -	0.723	0.785	0.796	0.810	0.804	0.799	0.825
er of syr	10000 (D1) -	0.749	0.796	0.810	0.823		0.814	
thetic i	15000 (D1) -	0.750	0.806	0.812			0.814	
mages	20000 (D1) -	0.783	0.801	0.823		0.822	0.818	
2	0000 (D1_ms) -	0.788	0.822				0.820	
		- 1	Mean a	verage	precis	ion on	test se	t

Optimal score threshold

Application to the real-world

Model predictions

Catch data

Challenge in automating count

Predictions

Challenge in automating count

Fish distribution?

Fish distribution as a function of time

Empty/non-fish images

Most images do not contain fish

- Large number of false positives
 - Images on deck

Images containing artifacts

Filtering algorithm

Empty/non-fish images

- Challenge: Most images do not contain fish
 - Long processing time (> 100 000 images/trawl haul)
 - 10 stereo pairs per second

75% images are empty

Empty/non-fish images

- Filter out empty images in Deep Vision system
- Run model only on active images
 - Fewer false positives
 - Faster processing time

With filter

Without filter

Before applying filter

After applying filter

After applying filter

Different species have different average swimming speeds => Overcount slower fish (appears in more consecutive images)

Automating count: comparison with catch data

- Compare catch and prediction counts
 - Catch data not available for all species
 - Species-dependent duplicate images
 - Counts/catch
 - Blue whiting: 10.4
 - Herring: 15.4
 - Mackerel: 40
 - Regression model can be used to estimate overall catch

Prediction on entire trawl haul

Data drift: variations in image quality

Evolution of Deep Vision system

• Changes in resolution, geometric calibration, colour-correction

2017

2018

2021

2022

=> Reduced performance of machine learning model

Data drift: variations in image quality

Continuously improve model with new data

- If labelled
 - Train/test on a variety of datasets
 - Finetune on sample of annotated data every year
- Not labelled
 - Semi-supervised learning
 - Run model on new images
 - Build new training set with images where
 - Prediction scores is high
 - Left prediction = Right prediction
 - Fine-tune on new training dataset

Visualisation in LSSS

Acoustic herring survey 2022

Acoustic herring survey 2022

CRIMAC

Methods used for stock assessment at IMR

Method	Acoustic	Trawl catch	In-traw	cameras (since ~2015)	
Task		(regular mesh)	Visualise img	Automatic (ML) predictions	_
Norwegian spring-spawning herring & blue whiting					X : done/or
Abundance estimate	x	Х	Х	X	X : future v
Length distribution		Х	Х	x	_
Age distribution		x			

oing

Length distribution

Challenges

• Same fish appears in several images

• Fish not always captured whole or in ideal position

Predicted fish length distribution (by pixel)

Tracking could help but only few frames per second

Methods used for stock assessment at IMR

Method	Acoustic	Trawl catch	In-traw	cameras (since ~2015)	
Task		(regular mesh)	Visualise img	Automatic (ML) predictions	_
Norwegian spring-spawning herring & blue whiting					
Abundance estimate	X	X	Х	X	X : future work
Length distribution		Х	Х	x	
Age distribution		Х			
Redfish		1	1		
Stock monitoring	X	X	X	X	

Redfish model

Mesopelagic fish distribution

- Growing interest in mesopelagic species
 - Gap in knowledge
- Trawl catch
 - Small organisms escape regular-sized mesh
 - Small mesh liners specifically developed
- Relevance of images from in-trawl cameras
 - Manual analyses prohibitively time-intensive
 - => developed object detection model (YOLOV8)

Methods used for stock assessment at IMR

Method	Acoustic	Trawl catch (regular mesh)	In-trawl	_	
Task			Visualise img	Automatic (ML) predictions	
Norwegian spring-spawning herring & blue whiting					
Abundance estimate	x	X	Х	X	X : future work
Length distribution		Х	х	x	
Age distribution		Х			
Redfish			-		
Stock monitoring	x	Х	Х	X	_
Mesopelagic fish					_
Relative abundance	x		Х	x	
Depth distribution	x		Х	X	

Mackerel abundance estimation

Challenge:

- Shallow distribution of mackerel
 - In blind zone of echo sounder
- High-density images
 - Undercounted by previous object detection model

Mackerel abundance: recent experiments

Work & video by Jørgen Høyer

Methods used for stock assessment at IMR

Method	Acoustic	Trawl catch (regular mesh)	In-traw		
Task			Visualise img	Automatic (ML) predictions	
Norwegian spring-spawning herring & blue whiting					X: done/ongoing
Abundance estimate	X	X	Х	X	X : future work
Length distribution		х	Х	X	
Age distribution		Х			
Redfish					_
Stock monitoring	x	Х	Х	X	
Mesopelagic fish					
Relative abundance	x		Х	X	
Depth distribution	x		Х	X	
Mackerel (swept area survey)			1		
Abundance estimate		х		X	

IMR Team

Machine Learning

Vaneeda Allken

Ketil Malde

Nils Olav Handegard

Funding by CRIMAC

(Center for Research-based Innovation in Marine Acoustic Abundance Estimation and Backscatter Classification)

Shale Rosen

Taraneh Westergerling M

Maria Tenningen

Thank you for your attention!

Contact: vaneeda@hi.no

- Fish species identification using a convolutional neural network trained on synthetic data, Vaneeda Allken, Nils Olav Handegard, Shale Rosen, Tiffanie Schreyeck, Thomas Mahiout, Ketil Malde, ICES Journal of Marine Science, Volume 76, Issue 1, January-February 2019, Pages 342–349, <u>https://doi.org/10.1093/icesjms/fsy147</u>
- A real-world dataset and data simulation algorithm for automated fish species identification, Vaneeda Allken, Shale Rosen, Nils Olav Handegard, Ketil Malde, Geoscience Data Journal, Vol 8, Issue 2, March 2021, Pages 199-209, https://doi.org/10.1002/gdj3.114
- A deep learning-based method to identify and count pelagic and mesopelagic fishes from trawl camera images, Vaneeda Allken, Shale Rosen, Nils Olav Handegard, Ketil Malde, *ICES Journal of Marine Science*, Volume 78, Issue 10, December 2021, Pages 3780–3792, <u>https://doi.org/10.1093/icesjms/fsab227</u>

