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ldentify best practices for the detailed decisions (“the devil’'s In the
details”) required to couple the burgeoning field of species distribution
models (SDMs) to more complex multispecies and end-to-end models
such as Ecospace, Ecosim, Atlantis, OSMOSE, EcoOcean, and MICE
models



SPECIES DISTRIBUTION MODELS (SDMSs)

Species distribution shifts by decade
and season: Coastal pelagic species
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COMPLEX ECOSYSTEM MODELS
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COMPLEX ECOSYSTEM MODELS
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IS THIS A GOOD IDEA?

e

Forcing complex ecosystem model with...

Small Pelagics distribution
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Projections of population
and food web response



BENEFITS!

Forcing complex ecosystem model with...
Small Pelagics distribution
% Atlantis

Projections of population

> and food web response

Improving ecosystem model’s

e age-structured distributions
Predators’ ¢ interannual distribution shifts

distribution
e thermal responses
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Decisions, Decisions, Decisions: cChoices when coupling Species Distribution
models to complex ecosystem models

Decisions during construction of the SDM

e SDM structure: Should an SDM model abundance or the probability of presence? Which covariates should
be included in the SDM?

e Spatial, temporal, and/or ontogenetic mismatches: How to best handle cases in which SDMs omit regions
(based on the spatial domain), years, seasons, or life stages included within the complex models? How to
work across models that vary in spatial and temporal resolution?

e |sthe SDMintended to represent the fundamental niche or arealized niche? The fundamental niche
indicates broad habitat preferences (a species could survive and thrive there), while the realized niche is
which habitat a species actually occupies
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Decisions, Decisions, Decisions: cChoices when coupling Species Distribution
models to complex ecosystem models

Decisions within complex ecosystem models when linking to SDMs

e Explicit movement: Should the more complex models include processes like movement rates or foraging
behavior, should they simply be forced by the SDM? Are detailed studies modeling processes such as
advection of individual organisms needed to inform the ecosystem model?

e Life history /dispersal: How to handle different spatial habitats for multiple life history stages ? What is the
necessary stage resolution in ecosystem models, and should we (and how do we) include processes such as
density-dependence and larval transport?

e Non-spatial ecosystem models: How can complex, but non-spatial or coarsely-spatial ecosystem models
be forced or informed by SDMs?

e Propagating uncertainty: How can estimates of uncertainty from SDMs be incorporated within the more
complex models?



BEST PRACTICE #1: DECIDE ON REALIZED VS
FUNDAMENTAL NICHE

o

Be cognizant of how, and in which model, the realized versus fundamental
niches are represented, and whether this is appropriate for the questions at

hand. ‘.
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BEST PRACTICE #1: DECIDE ON REALIZED VS
FUNDAMENTAL NICHE

Be cognizant of how, and in which model, the realized versus fundamental
niches are represented, and whether this is appropriate for the questions at
hand.

OSMOSE, Northern Humboldt Current

10°N

oy Covariates from the SDMs used as inputs to the OSMOSE model in
the Northern Peru Current Ecosystem
Type of SDM Covariates
Tl Fundamental Temperature, Salinity, Oxygen.
2 Niche A concave functional shape is assumed for all variables.
s Realized Niche Temperature, Salinity, Oxygen.

Net primary productivity (proxy of prey for small pelagics)
Bathymetry, distance to the shelfbreak (negative within the
shelf).

§ Abundance (local average density at several scales, e.g.
o o ke o v 200km).

LONGITUDE

Oliveros et al. 2017




BEST PRACTICE #2: EARLY LIFE STAGES MAY REQUIRE NEW
MECHANISTIC APPROACHES

For some cases, such as early life stages of fish, explicit, mechanistic studies of
dispersal and movement may be more appropriate than correlative approaches.



MAIN LIMITING FACTOR OF ANCHOVETA — BY STAGE @

Fundamental niche varies by life stage
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GULF OF ALASKA
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BEST PRACTICE #3: USE CARE WHEN EXTRAPOLATING IN TIME é‘
AND SPACE

Best practices for climate change projections will involve the use of covariates
available at such decadal time-scales, while also being conscious of the

challenges of extrapolating to novel conditions and areas.
Muhling et al. 2020
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BEST PRACTICE #4: QUANTIFY UNCERTAINTY

Climate change projections also should quantify uncertainty in environmental
conditions, and the subsequent implications for species distributions and for the
full ecosystem.

Change in blue shark habitat
suitability under three different

45 GFDL gl | 5 - HAD < 45 « IPSL gl oceanographic projections.
g
\ ( - 1985-2015
2070-2100
40 40 40 '
Moo
0.1
0001
35 35 ' 0
5 35 - 0.2
3-0130 -128 -126 -124 -122 -120 -118 -116 39‘:30 -128 -126 -124 -122 -120 -118 -116 3-0130 -128 -126 -124 -122 -120 -118 -116

Lezama Ochoa et al. 2024



BEST PRACTICE #4: QUANTIFY UNCERTAINTY

Best practices include quantifying the uncertainty stemming from the SDMs, and
how such uncertainty propagates through the linked ecosystem models.
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BEST PRACTICE #5: EMBRACE NEW OBSERVATIONS

Novel methods (such as eDNA and the use of fishery-dependent data) should

be embraced.
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BEST PRACTICE #6: SDIMS CAN BE USED EVEN IN NON-SPATIAL
ECOSYSTEM MODELS

Practical applications of SDMSs include for instance better spatial apportionment
of catches, and translation of environmental performance curves (e.g. thermal
niches) to improve understanding of population and ecosystem productivity.



CALIFORNIA CURRENT — ECOTRAN
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BEST PRACTICE #7: PROMOTE DIALOG BETWEEN DISCIPLINES,
AND SHARE PRODUCTS VIA DATA PORTALS

Critically, opportunities for open dialog between SDM developers, ecosystem
modelers, oceanographers, and others is necessary and productive, as is
dissemination of products via data portals to facilitate use, integration, and
evolution. & e - o Jaceu |
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KEY MESSAGES

Practitioners from many regions have begun linking SDMs to ecosystem

models, for small pelagic fish and other species

This allows more dynamic and realistic ecosystem models, including

e age-structured distributions

* interannual distribution shifts

« thermal responses

This linking requires some careful decisions, guided by best practices.

Contact us if you are experimenting with this yourself!
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This work is a product of the ICES PICES Working Group on Small Pelagic Fish. The work stems from a workshop at the
2022 ICES PICES Small Pelagic Fish Symposium.
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