Ecosystem models to evaluate the role of trophic vertical exchange processes on forage and predator productivity within oceanic ecosystems

Jim Ruzicka, Stacy Calhoun-Grosch, Jesse van der Grient, Jacob Snyder & Réka Domokos

Vertically-resolved models for Oceanic ecosystems

☆ To manage potential large, untapped resource: mesopelagic fish → fish meal for aquaculture

Why?

To understand the Biological Carbon Pump and its role in Climate Change

To understand dynamics of the forage base for valuable oceanic fisheries

To be prepared to manage effects of deepsea mining

Oceanic ECOPATH Food Web Models

Stacy Calhoun-Grosch

EcoTran: end-to-end food web modeling of pelagic ecosystems

(Stacy Calhoun-Grosch)

From a vertically-integrated ECOPATH model Rapid depth-resolved food webs:

Reapportion resources among predators @ each depth to create depthresolved food web (the donor-defined Trophic Matrix is in mass-balance)

Trophic matrix

Sinusoidal Diel Vertical Migration

Model Drivers: Nitrate & detritus

Primary production cycle: Hidalgo-Gonzalez et al. (2005) 2.9 mmoles N/m2/d summer-fall

5.1 mmoles N/m2/d winter-spring

Model tuning: f-ratio only

Primary production supported by NO₃/(NO₃+NH₄) Hidalgo-Gonzalez et al. (2005) *f-ratio* at least 0.21 Kelly et al. (2021) *f-ratio in situ* 0.07-0.14

Migratory Mesopelagic Fish: hourly consumption gains and expenses

Net Daily Vertical Flux Rates

DVM is 30% of total biological pump

80% detritus total DVM sinking 70% crustacean Primary Production) gelatinous 60% ·· low TL fish high TL fish 50% 40% DVM 30% %) flux rate 20% crustaceans iellies 10% low TL fish 0% high TL fish Jar ta Way Way Mr. m. m. the Cab Oct May Dac

Fish are a minimal contributor (<5% sinking) can reverse the pump

Maximum Biomass Conservation Error: 0.14% of consumer input

Progress in Oceanography 116 (2013) 14–30

Carbon export mediated by mesopelagic fishes in the northeast Pacific Ocean

P.C. Davison^{a,*}, D.M. Checkley Jr.^a, J.A. Koslow^a, J. Barlow^{a,b}

Our Model: Total DVM is 30% of BCP

	Location	IdXd	DVIVI % total flux
-Mutairi and Landry (2001)	Hawaii	DVM zooplankton	23%
am et al. (1995)	Bermuda	DVM zooplankton	27%
ernandez-Leon et al. (2001)	Canary Is.	DVM zooplankton	<mark>25%-30%</mark>
daka et al. (2001)	W. Eq. Pac.	DVM zooplankton	16%-31%
bari et al. (2008)	N.W. Pac.	OVM, DVM copepods	<mark>29%-27%</mark>
Borgne and Rodier (1997)	E. Eq. Pac.	DVM zooplankton	3%
Borgne and Rodier (1997)	W. Eq. Pac.	DVM zooplankton	6%
nghurst et al. (1990)	Sargasso Sea, E. Trop. Pac.	DVM zooplankton	4%
nghurst and Williams (1992)	Bermuda	OVM copepods	2%
orales (1999)	Bermuda	OVM, DVM copepods	27%-30%
tzeys and Hernandez-Leon (2005)	Canary Is.	DVM zooplankton	30%-37%
hnetzer and Steinberg (2002)	Bermuda	DVM zooplankton	3%
einberg et al. (2000)	Bermuda	DVM zooplankton	7%
einberg et al. (2008b)	Hawaii	DVM zooplankton	15%
einberg et al. (2008b)	N.W. Pac.	DVM zooplankton	57%-60%
kahashi et al. (2009)	N.W. Pac.	DVM copepods	26%
ang and Dam (1997)	Eq. Pac.	DVM zooplankton	<mark>24%-31%</mark>
bra et al. (2005)	Canary Is.	DVM zooplankton	<mark>13%-35%</mark>
daka et al. (2001)	W. Eq. Pac.	DVM fishes	<mark>13%-30%</mark>

LIMNOLOGY and OCEANOGRAPHY

Limnol. Oceanogr. 66, 2021, 1639-1664

Toward a better understanding of fish-based contribution to ocean carbon flux

Grace K. Saba[®],^{1*} Adrian B. Burd[®],² John P. Dunne[®],³ Santiago Hernández-León[®],⁴ Angela H. Martin,⁵ Kenneth A. Rose[®],⁶ Joseph Salisbury[®],⁷ Deborah K. Steinberg[®],⁸ Clive N. Trueman[®],⁹ Rod W. Wilson[®],¹⁰ Stephanie E. Wilson[®]¹¹

Our Model: Fish DVM is <5% BCP

Globally, "...fishes contribute an average (+/- standard deviation) of about 16.1% (13%) to total carbon flux out of the euphotic zone." – Saba et al. 2021

Author	Location	Таха	fish DVM % sinking
Staresinic et al. (1983)	Peru upwelling	Peruvian anchovy	7.3%
Ariza et al. (2015)	Canary Islands	Myctophids	23.0%
Belcher et al. (2019)	Scotia Sea, Southern Ocean	Myctophids	6.9%
Belcher et al. (2020)	Scotia Sea, Southern Ocean	Myctophids	21.1%
Hernández-León et al. (2019)	tropical/subtropical Atlantic	Myctophids	3.6%
Hidaka et al. (2001)	west equatrorial Pacific	Myctophids	20.7%
Davison et al. (2013)	Northeast Pacific	Myctophids	22.0%
Hudson et al. (2014)	Mid-Atlantic Ridge (North Azores)	Myctophids	0.3%

Sensitivity to detritus sinking rates

Sensitivity to temperature response

Hawai'i-EcoTran

End-to-end ecosystem modeling for nearshore & oceanic regions

- MECHANISTIC multi-species ecosystem model for nearshore & oceanic regions driven with ROMS & MOM6 output
 - OUTPUT: group productivities & spatial distributions under variable environment & effort by longline & small-boat fleets
 - dynamics evolve from interaction of trophic, physiological, and behavioral rules defining multiple functional groups

- Grid: 84 oceanic & nearshore regions, 4 depth zones
 - Physical model drivers w/ Dax Matthews
- Food web: builds from Weijerman & Choy models
 - 54 nearshore groups
 - 40 oceanic groups

Comparison: Net Daily Vertical Flux Rates

Gulf of Mexico: DVM is 30% of total Biological Carbon Pump

Central North Pacific: DVM is 12% of total Biological Carbon Pump

Comparison: Sinking Rate Response

Gulf of Mexico

Central North Pacific

Comparison: Temperature Response (Q₁₀)

Gulf of Mexico

Central North Pacific

Comparison: Crustacean Zooplankton DVM rate

Gulf of Mexico

Central North Pacific

EcoTran process modeling in the **Central North Pacific**

Oxygen

effects on vertical migration & physiology

Oxygen profile @ 400m-longline target (150W, 30-10N)

Copernicus: GLOBAL_MULTIYEAR_BGC_001_029

Regional-Temporal changes in DVM Acoustics: DVM

at ocean feature

Domokos 2023 DeepSea Res I

Deep-sea Mining Plumes

effects of plumes on physiology & trophic ecology

Jesse van der Grient Ph.D (UH SOEST)

ISA 2014