

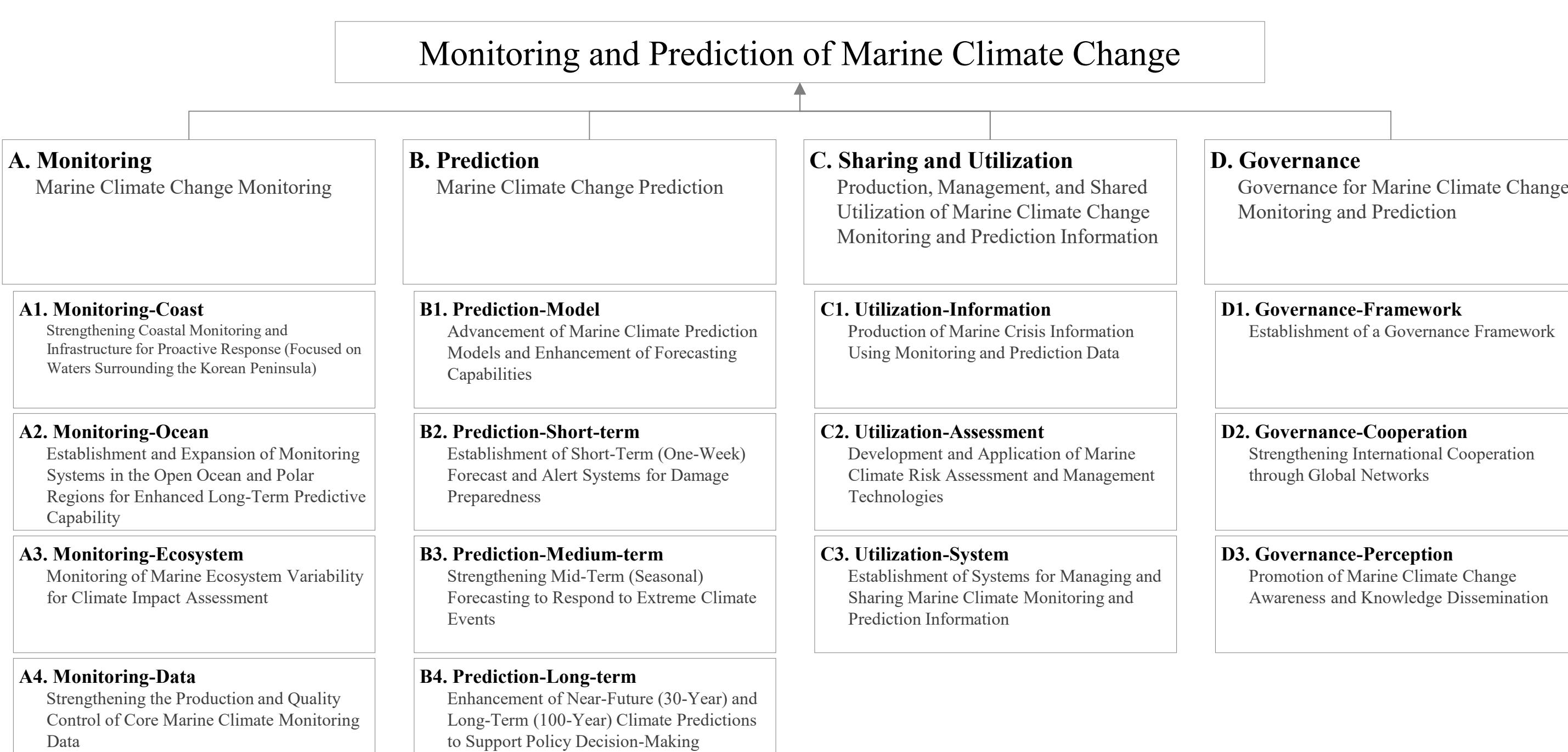
Study on the Evaluation of Marine Climate Change Monitoring and Prediction Activities using AHP

Kyu-Won Hwang(School of Business, Pusan National University / Ocean Policy Research Center, Korea Institute of Ocean Science & Technology, Chul-Yong Lee(School of Business, Pusan National University / Institute for Future Earth, Pusan National University) Moon-Suk Lee(Ocean Policy Research Center, Korea Institute of Ocean Science & Technology)

Background

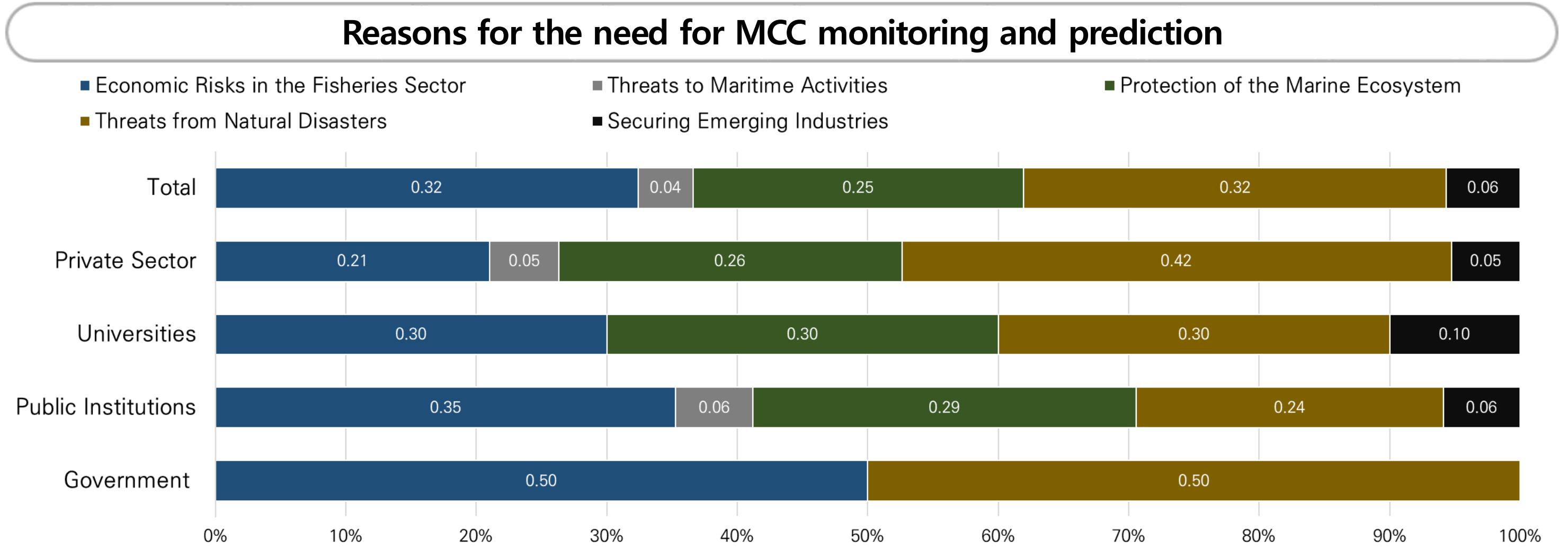
According to the United Nations Environment Programme (UNEP, 2023), climate change is increasingly threatening water resources, food security, and energy systems, which may in turn exacerbate social instability through migration, conflict, and other societal disruptions. In particular, the ocean has experienced a doubling of its warming rate over the past two decades, while the rate of sea-level rise has accelerated twofold in the past 30 years. Simultaneously, multiple stressors such as ocean deoxygenation, acidification, and ecosystem degradation are intensifying (IOC-UNESCO, 2024). The World Meteorological Organization (WMO, 2025) also reported that the past decade has been the warmest on record, with 2024 marking the highest global temperatures ever observed. In this context, accurate forecasting and systematic information provision through marine climate change monitoring, prediction, and data sharing have become essential for enhancing national-level climate adaptation and safety management. In particular, establishing a sustainable and effective marine climate change observation and prediction system serves as a crucial foundation for evidence-based policymaking in the marine and fisheries sector. The Korean government strengthened its policy framework by enacting the Act on Climate and Climate Change Monitoring and Prediction in 2023, which came into force in 2024 (Ministry of Oceans and Fisheries, 2024).

Objectives

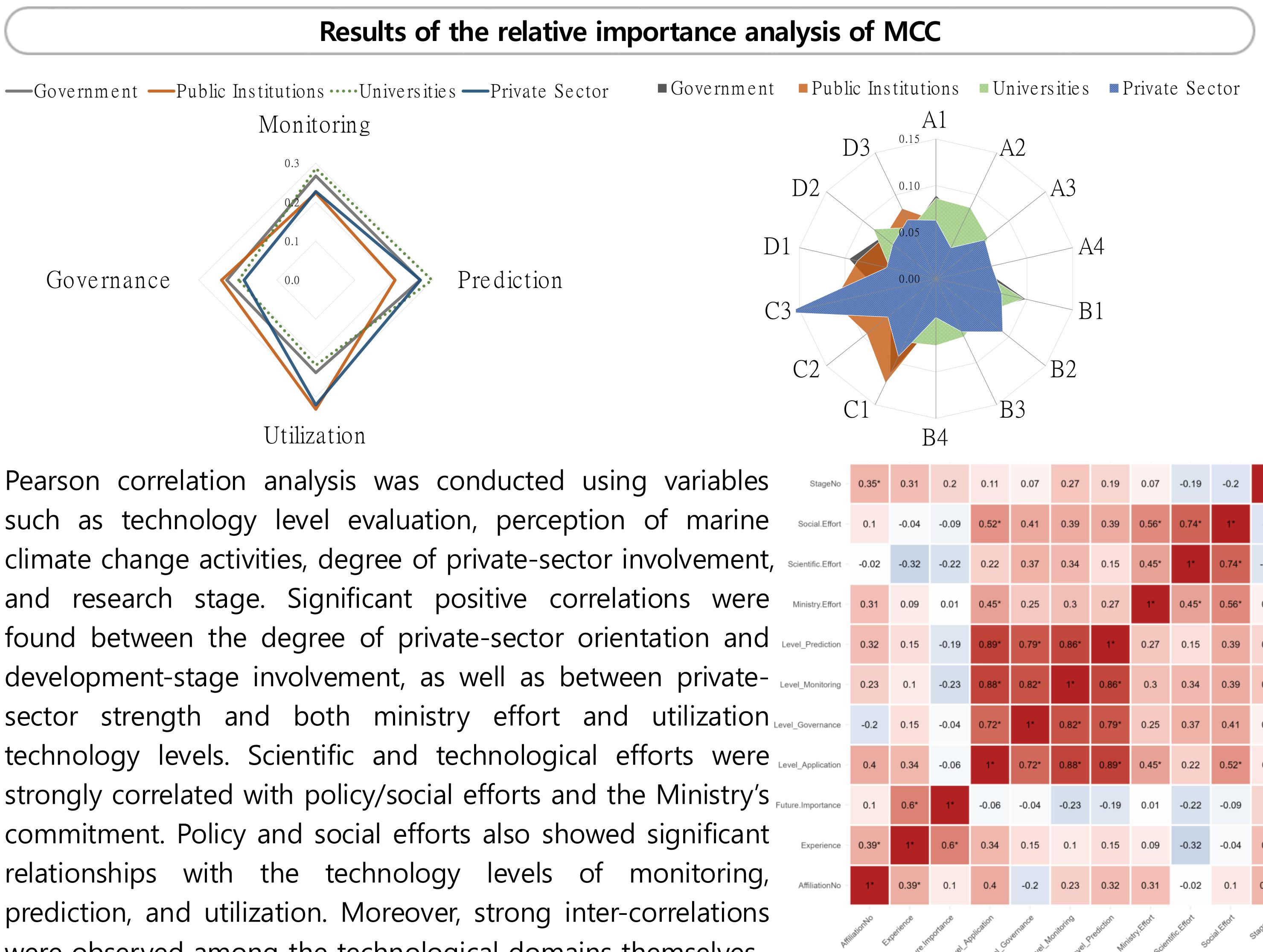

In response to the growing impacts of climate change, changes in the marine environment, and recent government initiatives, this study aims to evaluate the technological level and establish the priority areas of Korea's marine climate change monitoring and prediction activities. Specifically, the study seeks to provide policy-relevant evidence by incorporating expert opinions, structuring marine climate change monitoring and forecasting activities, and identifying strategic directions for technological development to improve policy efficiency.

Methods

To assess the relative importance and priorities of marine climate change monitoring and prediction activities, this study employed the Analytic Hierarchy Process (AHP) method. The survey structure consisted of four sections: respondent characteristics, expert perceptions, technology level assessment, and evaluation of relative importance. Respondent characteristics included affiliation, professional experience, research stage, field of marine science and technology activity, and area of research or work, which were used to identify the background distribution of the sample. Expert perceptions were assessed using a five-point Likert scale to quantitatively evaluate factors such as the level of scientific and technological effort, policy and societal effort, the relative effort of the Ministry of Oceans and Fisheries compared to other ministries, perceived future importance, key drivers of marine climate change response, and the role of government. In addition, the technology assessment section examined the leading countries by technology level in each subdomain (Level 1 and Level 2) and proposed strategies for future technological advancement. The survey targeted 54 experts in marine and climate-related fields from government, research institutes, universities, and private companies. Among them, those who completed both the technology-level assessment and the AHP survey were included for consistency verification. To ensure the reliability of AHP results, a Consistency Ratio (CR) was applied. Although a CR threshold of 0.1 is generally recommended, this study adopted a relaxed criterion of 0.2 in consideration of research constraints (Hummel et al., 2014). Ultimately, valid responses from 37 experts (11% government, 49% research institutes, 14% universities, 5% private sector) were included in the final analysis. The survey was conducted over three weeks in August 2024 through a combination of face-to-face interviews and online questionnaires. The hierarchical structure of marine climate change monitoring and prediction activities was designed based on the Act on Climate and Climate Change Monitoring and Prediction.


Survey items for the evaluation of Marine Climate Change monitoring and prediction activities

Category	Evaluation item	Item definition	Scale
Personal Attributes	Affiliation	Affiliated institution of the respondent	Nominal
	Career Experience	Years of professional experience of the respondent	Ratio(%)
	R&D Stage	Main stage of the respondent's research or work	Nominal
	Field of Marine S&T Activities	Area of engagement within marine science and technology	Nominal
Expert Perception & Evaluation	Research/Work Area(Legal Classification)	Field of work within the legal classification of marine climate change	Nominal
	Scientific and Technological Effort Level	Perceived level of domestic effort from the S&T perspective	Interval
	Policy/Societal Effort Level	Perceived level of policy and societal efforts within Korea	Interval
	Effort by Ministry of Oceans and Fisheries	Effort level of MOF compared to other ministries	Interval
Evaluation of Technology Level&Relative Importance	Future Importance Outlook	Expected future importance of marine climate monitoring and prediction	Interval
	Rationale for Addressing Marine Climate Change	Reason why responding to marine climate change is necessary	Nominal
	Government Role in Monitoring/ Prediction	Perceived role of government in marine climate monitoring and prediction	Nominal
	Country with Highest Technological Capability	Country perceived to hold the leading technology in the relevant field	Nominal
Domestic Technology Level&Relative Importance	Domestic Technology Level	Domestic technological level relative to the leading country	Ratio(%)
	Basis for Evaluation & Improvement Directions	Grounds for the evaluation and suggestions for future improvement	Nominal
Relative Importance	Relative Importance	Relative importance among upper-level and lower-level criteria	Interval



Results

Analysis of the perceived need for marine climate change monitoring and prediction by affiliation revealed distinct group differences. Government experts emphasized economic threats to the fisheries sector and natural disaster risks as key reasons for monitoring and prediction. Research institute experts identified fisheries-related economic threats as the top concern, followed by marine ecosystem protection and disaster risks. University experts, excluding threats to maritime industries such as shipping and tourism, also highlighted fisheries economics, ecosystem protection, and disaster risks as major factors. Private-sector experts prioritized natural disaster risks, followed by ecosystem protection and fisheries-related economic threats, demonstrating varying perspectives across groups.

The relative importance analysis using AHP showed notable variations across affiliations. At Level 1, government experts regarded Monitoring and Prediction as most important, while research institutes emphasized Utilization and Governance. University experts prioritized Prediction followed by Monitoring, whereas private-sector experts valued Utilization and Prediction. At Level 2, the differences among groups became more pronounced. The average CR values were 0.0265 (government), 0.0537 (research institutes), 0.0151 (universities), and 0.0886 (private sector), all below the 0.2 threshold, confirming internal consistency. The top five prioritized activities included C1 (Utilization-Information) and B1 (Prediction-Model) for government experts; C1 (Utilization-Information) and C3 (Utilization-System) for research institutes; B1 (Prediction-Model) and A1 (Monitoring-Coast) for universities; and C3 (Utilization-System) and C1 (Utilization-Information) for private-sector experts.

Conclusions

The overall assessment of Korea's marine climate change monitoring and prediction technology indicates that it operates at approximately 73.0–76.4% of the level of the world's leading nations. Among the major domains, the Utilization area exhibited the lowest technological maturity, whereas Governance showed the highest. Government experts tended to rate the national technology level lower than did experts from research institutes or private companies, while university experts perceived the level of scientific and technological effort as the lowest overall, underscoring significant perception gaps among groups. The AHP results revealed that, at the higher strategic level, government experts emphasized Monitoring and Prediction, whereas research institutes and private-sector experts prioritized Utilization. This reflects differing institutional missions and interests. At the sub-domain level, Information Utilization (C1) and Prediction Models (B1) were consistently ranked as highly important, while private-sector experts gave greater weight to Short-term Prediction (B2), again illustrating group-based differences in strategic priorities.

REFERENCES

- Hummel, J. M., Bridges, J. F. and IJzerman, M. J.(2014), Group decision making with the analytic hierarchy process in benefit-risk assessment: a tutorial, *The Patient-Patient-Centered Outcomes Research*, Vol. 7, No. 2, pp. 129-140.
- IOC-UNESCO(Intergovernmental Oceanographic Commission of UNESCO)(2024), *State of the Ocean Report*, Paris, IOC-UNESCO. (IOC Technical Series, 190).
- Saaty, R. W.(1987), The analytic hierarchy process-what it is and how it is used, *Mathematical modelling*, Vol. 9, No. 3-5, pp. 161-176.

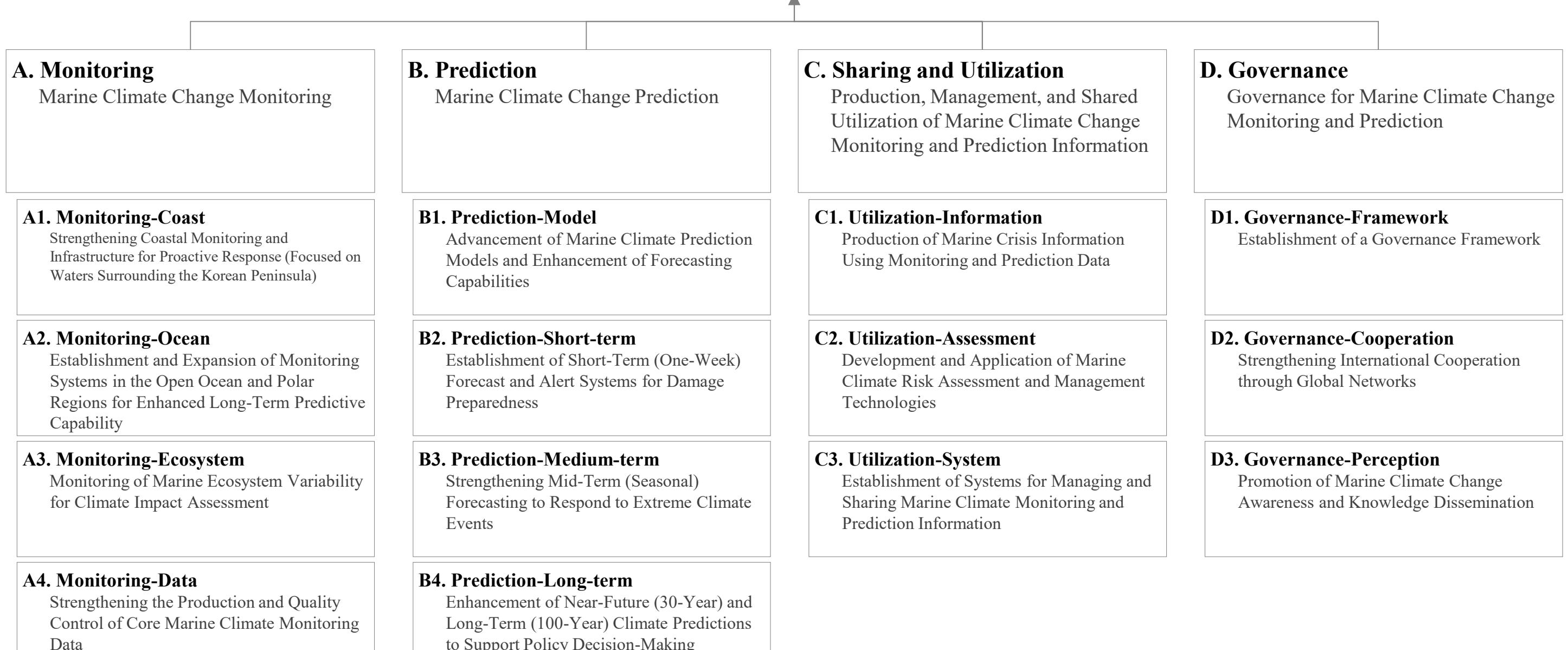
Kyu-Won Hwang(School of Business, Pusan National University, Ocean Policy Research Center, Korea Institute of Ocean Science & Technology),
 Chul-Yong Lee(School of Business, Pusan National University / Institute for Future Earth, Pusan National University)
 Moon-Suk Lee(Ocean Policy Research Center, Korea Institute of Ocean Science & Technology)

Background

최근 UNEP(2023)는 기후변화로 인해 수자원, 식량, 에너지 등이 위협받고 있으며, 이로 인하여 이주, 분쟁 등 사회적 불안정이 심화될 수 있다고 경고하였다. 특히 해양의 경우 지난 20년간 온난화율이 두 배로 증가하였고, 해수면 상승 속도는 지난 30년간 2배로 빨라졌다. 동시에 해양 산소 농도 감소, 산성화, 생태계 파괴 등 복합적 변화가 가속화되고 있다(IOC-UNESCO 2024). 또한 WMO(2025)에 의하면 지난 10년 동안 역대 가장 무더운 시기를 기록했으며, 2024년에는 최고 기온이 경신되었다(WMO, 2025). 이러한 상황에서 해양 기후변화 감시, 예측, 정보 생산 및 공동 활용을 통한 정확한 예측과 체계적인 정보 제공은 국가 차원의 기후변화 대응 및 안전관리 강화를 위해 필수적이다. 특히 해양 기후변화에 대한 지속적 감시·예측 체계 구축은 실효성 있는 해양수산 분야 정책 수립을 위한 중요한 기반이 된다. 정부는 2023년 「기후·기후변화 감시 및 예측 등에 관한 법률」을 제정한 이후 2024년 시행하는 등 관련 정책을 강화하고 있다(해양수산부, 2024). 더 나아가 대기, 해양, 극지 등 기후체계를 확립하고, 기후예측 정보 생산을 통해 국가 차원의 기후위기 대응력을 제고하고 있다.

Objectives

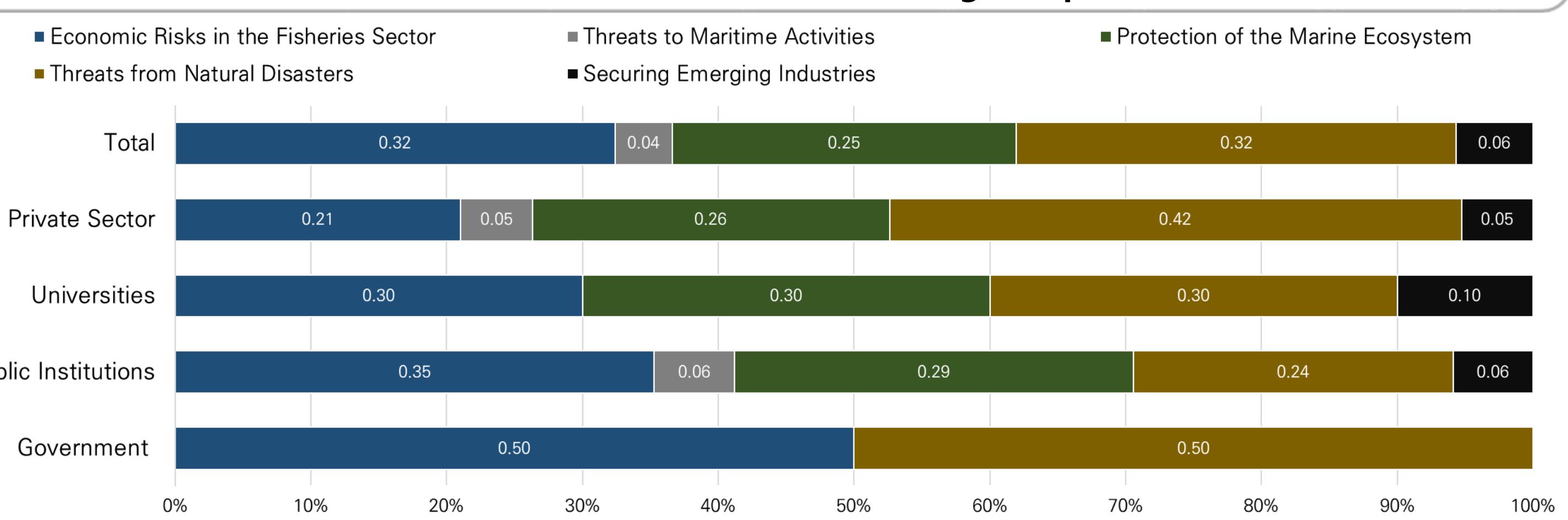
본 연구는 이러한 기후변화 및 해양환경 변화와 정부 정책에 부응하여, 해양 기후변화 감시 및 예측 활동의 기술수준을 평가하고 우선순위를 도출하는 것을 목적으로 한다. 특히 전문가 의견을 반영하여 정책 기초자료를 제공하고, 해양 기후변화 감시 및 예측 활동을 구조화하고 기술지원 방향을 설정함으로써 정책의 효율성을 높이고자 한다.


Methods

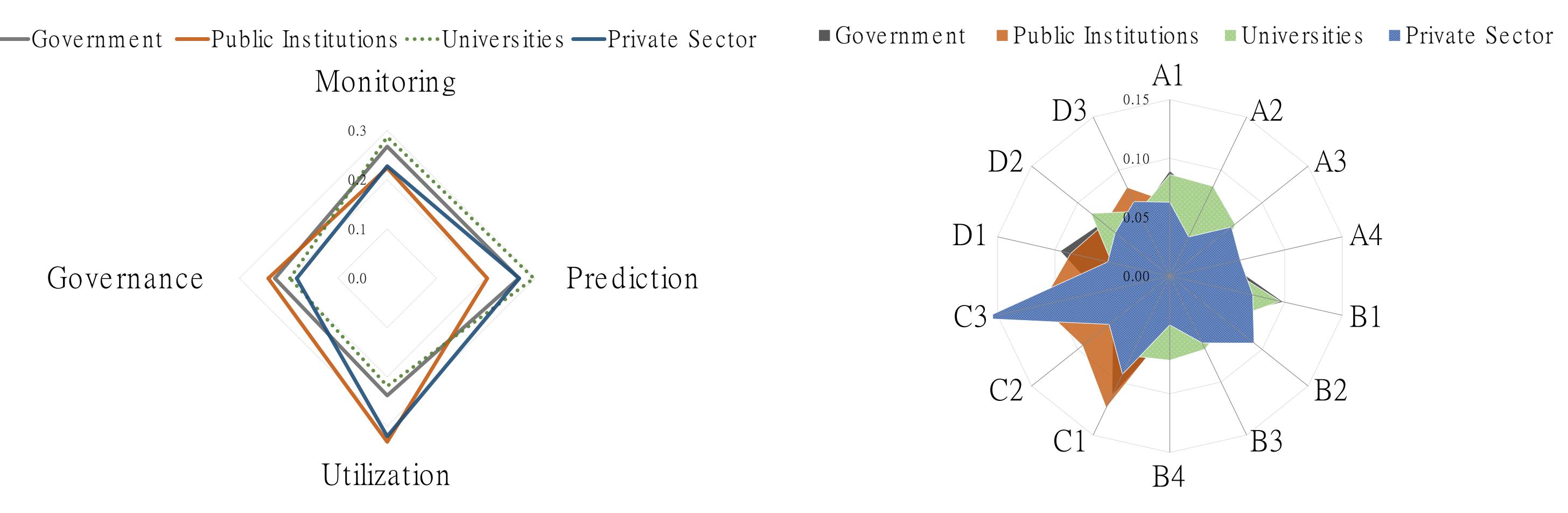
본 연구는 해양 기후변화 감시 및 예측 활동의 중요도와 우선순위를 평가하기 위하여 AHP 기법을 활용하였다. 연구의 설문 구조는 아래의 표와 같이 개인속성, 전문가 인식, 기술수준 평가, 상대적 중요도 조사 등으로 구성하였다. 먼저 개인속성 항목에서는 응답자의 소속 기관, 경력, 연구단계, 해양과학기술 활동 분야, 연구(업무) 분야 등을 조사하여 표본의 배경 특성을 파악하였다. 이어 전문가 인식 및 평가 항목에서는 1점에서 5점까지 리커트 척도(Likert scale)를 활용하여 정량적으로 평가하였다. 해양 기후변화 감시 및 예측 분야에 대한 과학기술적 노력의 정도, 정책·사회적 노력의 정도, 타 부처 대비 해양수산부의 상대적 노력 수준, 해당 활동의 미래 중요도, 해양 기후변화 대응 필요성의 주요 요인, 정부의 역할 등을 포함하여 전문가의 전반적 인식을 측정하였다. 또한 기술수준 및 발전 방안에 관한 문항에서는 계층 1 및 계층 2의 세부 영역별 최고 기술 보유국가, 향후 기술 향상 방안 등을 조사하였다. 조사 대상은 정부, 연구기관, 대학교, 민간기업에 소속된 해양 및 기후 관련 전문가 총 54명이며, 이중 기술수준 평가와 AHP 설문을 동시에 수행하여 응답 일관성을 검증하였다. 분석 시 AHP의 신뢰도 확보를 위해 일관성 비율(CR)을 적용하여 신뢰도와 타당성을 확보하였으며, 다만 일반적으로 0.1 이하를 기준으로 일관성을 판단하지만, 본 연구 제약을 고려하여 0.2 이하까지 합리적 허용 한계로 설정하여 채택하였다(Hummel et al., 2014). 최종적으로 37명(정부 소속 11%, 연구기관 49%, 대학 14%, 민간기업 5%)의 전문가 응답을 분석에 활용하였다. 설문조사는 2024년 8월 약 3주간 대면 면담과 온라인 설문 방식을 병행하여 수행되었다. 해양 기후변화 감시 및 예측 활동의 계층 구조는 아래의 그림 같이 「기후·기후변화 감시 및 예측 등에 관한 법률」을 기반으로 설정하였다.

Survey items for the evaluation of Marine Climate Change monitoring and prediction activities

Category	Evaluation item	Item definition	Scale
Personal Attributes	Affiliation	Affiliated institution of the respondent	Nominal
	Career Experience	Years of professional experience of the respondent	Ratio(%)
	R&D Stage	Main stage of the respondent's research or work	Nominal
	Field of Marine S&T Activities	Area of engagement within marine science and technology	Nominal
Expert Perception & Evaluation	Research/Work Area(Legal Classification)	Field of work within the legal classification of marine climate change	Nominal
	Scientific and Technological Effort Level	Perceived level of domestic effort from the S&T perspective	Interval
	Policy/Societal Effort Level	Perceived level of policy and societal efforts within Korea	Interval
	Effort by Ministry of Oceans and Fisheries	Effort level of MOF compared to other ministries	Interval
Evaluation of Technology Level & Relative Importance	Future Importance Outlook	Expected future importance of marine climate monitoring and prediction	Interval
	Rationale for Addressing Marine Climate Change	Reason why responding to marine climate change is necessary	Nominal
	Government Role in Monitoring/ Prediction	Perceived role of government in marine climate monitoring and prediction	Nominal
	Country with Highest Technological Capability	Country perceived to hold the leading technology in the relevant field	Nominal
Domestic Technology Level	Domestic Technology Level	Domestic technological level relative to the leading country	Ratio(%)
	Basis for Evaluation & Improvement Directions	Grounds for the evaluation and suggestions for future improvement	Nominal
Relative Importance	Relative Importance	Relative importance among upper-level and lower-level criteria	Interval


Monitoring and Prediction of Marine Climate Change

Results


소속 집단별 해양 기후변화 감시 및 예측이 필요한 이유를 분석한 결과 아래의 그림과 같이, 정부 소속 전문가들은 수산 분야 경제적 위협과 자연재해 위협이 주요한 이유로 인식하였다. 연구기관 소속 전문가들은 수산 분야 경제적 위협이 가장 중요한 이유이며, 다음 해양생태계 보호, 자연재해 위협 등의 순이다. 다음 대학 소속 전문가는 해운, 해양관광 등 해양활동 위협을 제외하고 수산 분야 경제적 위협, 해양생태계 보호, 자연재해 위협 등의 이유로 감시 및 예측이 필요하다고 인식하고 있다. 민간기업 소속 전문가들은 자연재해 위협을 가장 높게 평가하였으며, 다음 해양생태계 보호, 수산 분야 경제

Reasons for the need for MCC monitoring and prediction

AHP를 활용한 상대적 중요도 분석 결과를 아래의 그림에 제시하였다. Level 1 전략의 중요도를 보면, 정부 소속 전문가는 감시와 예측을 가장 중요하게 인식한 반면, 연구기관은 활용과 거버넌스를 중시하였다. 대학 소속 전문가는 예측, 감시 순으로 평가했으며, 민간기업은 활용, 예측 순으로 평가하였다. 즉 소속에 따라 뚜렷한 차이가 나타났음을 확인할 수 있다. 상대적 중요도 평가의 CR 값은 소속 집단별 CR 평균값은 정부 0.0265, 공공기관 0.0537, 대학 0.0151, 민간기업 0.0886이며, 모든 영역에서 0.2 이하로 나타나 일관성이 확보되었다. 상위 5개 활동을 보면, 정부 전문가들은 C1(활용-정보), B1(예측-모델) 등을, 연구기관은 C1(활용-정보), C3(활용-체계) 등을, 대학은 B1(예측-모델), A1(감시-연안) 등을, 민간기업은 C3(활용-체계), C1(활용-정보) 등을 중시하는 것으로 나타난다.

Results of the relative importance analysis of MCC

앞서 분석한 기술 수준 평가, 해양 기후변화 활동 인식, 소속 집단의 민간 영역 강도, 연구단계 수준 등을 변수로 Pearson 상관관계 분석 결과를 아래의 그림에 제시하였다. 집단 특성과 연구단계, 전문가 인식, 기술수준 간 상관관계를 분석한 결과, 몇 가지 유의한 관계가 확인되었다. 민간 성격이 강할수록 개발 단계와 유의한 양의 상관관계를 보였으며, 민간 강도와 해양수산부 노력 정도, 활용 기술수준 간에도 양의 관계가 나타났다. 과학기술적 노력은 정책·사회적 노력 및 해양수산부 노력과 높은 양의 관계를 보였다. 정책·사회적 노력은 감시, 예측, 활용 기술수준과 모두 유의한 관계를 보였다. 기술수준 간에도 매우 높은 상관관계가 확인되었다.

Conclusions

영역별 기술수준 평가 결과, 한국의 해양 기후변화 감시 및 예측 기술수준은 최고 기술 보유국 대비 73.0-76.4% 수준으로 평가되었고, 활용 영역의 기술수준이 가장 낮았으며, 거버넌스 영역의 기술수준이 가장 높은 것으로 나타났다. 소속별 인식 차이를 보면, 정부 소속 전문가는 대부분 영역의 기술수준을 낮게 평가한 반면, 연구기관 및 민간기업 전문가는 상대적으로 높게 평가했다. 특히 대학 소속 전문가는 과학기술적 노력 수준을 가장 낮게 인식하여 소속별 인식 차이가 뚜렷했다.

AHP 분석 결과 상위 영역 중요도를 보면, 정부 소속 전문가는 감시와 예측을 가장 중요하게 평가한 반면, 연구기관과 민간기업 전문가는 활용을 최우선으로 꼽았다. 이는 전문가의 소속 기관 목적과 이해관계에 따라 중요도 인식이 다를을 보여준다. 하위 영역 우선순위 도출결과 전반적으로 정보 활용(C1)과 예측 모델(B1)이 중요하게 평가되었으나, 민간기업 전문가는 단기 예측(B2)을 높은 순위에 두는 등 하위 활동에서도 집단별 중요도 차이가 확인하였다.

REFERENCES

- Hummel, J. M., Bridges, J. F. and IJzerman, M. J.(2014), Group decision making with the analytic hierarchy process in benefit-risk assessment: a tutorial, *The Patient-Patient-Centered Outcomes Research*, Vol. 7, No. 2, pp. 129-140.
- IOC-UNESCO(Intergovernmental Oceanographic Commission of UNESCO)(2024), *State of the Ocean Report*, Paris, IOC-UNESCO. (IOC Technical Series, 190).
- Saaty, R. W.(1987), The analytic hierarchy process-what it is and how it is used, *Mathematical modelling*, Vol. 9, No. 3-5, pp. 161-176.