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high-throughput imaging
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I would like to acknowledge that this work has been conducted within
the Strait of Georgia, on the traditional, ancestral and unceded

territory of the Musqueam, Sechelt, Squamish, and Tla'amin First
Nations who live on and care for these land and waters.




/ooplankton: delicious and nutritious

Microbial
loop

Modified from: Herrera, Inma. 2014. “The Use of AARS Activity as a Proxy for Zooplankton and Ichthyoplan kton Growth Rates.”

Crucial prey resource for multiple fish life
stages

Anomalies in zooplankton dynamics
impact forage fish survival

» This includes juvenile salmon! Botdtetal.
2019, Mackas et al. 2013, Perry et al. 2021)

Large, lipid-rich zooplankton = faster

growth and more energy storage (zeamish and
Mahnken, 2001, Cushing, 1990, Duffy and Beauchamp, 2011)



Nearshore Zooplankton Assemblages

[\

Distinct and highly variable (Barnett and Jahn 1987, Harrison et al. 1983)

Important habitat for many fish species, particularity forage fish such as
juvenile salmon and herring (e.g., Duffy et al 2010, Schweigert et al 2013)

Experience closer proximity to terrestrial influences such as urbanization and
industrialization.

Despite this nearshore zooplankton resources have received little
attention in the Strait of Georgia.
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Research Aims

®

Use image analysis to characterize nearshore zooplankton
assemblages

Explore depth and proximity to benthic systems as drivers of nearshore
zooplankton assemblage structure

| Assess how depth driven dynamics impact trophic energy transfer and
v zooplankton production over the bloom period



Malaspina Strait

* Located in the Strait of Georgia
* one of the most seasonally
productive regions on the west
coast of Canada
* Critical migration pathway for

juvenile salmon (Fureyetal., 2015, Healy et
al.2017)

Map of the Salish Sea & Surrounding Basin: Stefan Freelan,
WWU, 2009



Pacific Salmon Foundation: Citizen Science
Project (2015-2025)

R N « ~80 locations sampled 2-3 times per
e §e7 oo, Povel River A month between February to October
Courtenay. .'.'°.. ' 'm * “mosquito fleet” of citizen scientists
RO that go out simultaneously
e ¢ o~/ « Dataon:
Nenaimo 5 * Ocean Networks Canada
AN | * Strait of Georgia Data Centre
@&, °

Victoria

Map courtesy of Pacific Salmon Foundation

PACIFIC SALMON
FOUNDATION



Zooplankton Sampling Sites (2024) PACIFIC SALMON

FOUNDATION

Sites:

* |S-2 (depths ~30m)mp sampled to bottom
* [S-6 (depths ~250 m)

+ IS-4 (depths ~420 m)fSaMpled to 150m
Variety of data captured
 CTD (temperature, salinity, chl)

* Nutrients

 Zooplankton (vertical tow, ring net)
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Methods

N

Photos: PSF volunteers sampling Malg'ina Strait, September 2024
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Taxa: Cyphocaris challengeri

Length: 1.36316 mm

Volume: 0.86908 mm?




Holoplankton: spend all of
their life cycle as plankton

lllustrations: modified from NOAA

Meroplankton: spend only part
of their life cycle as plankton
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Holoplankton: spend all of Meroplankton: spend only part
their life cycle as plankton of their life cycle as plankton

Ratios reflect influence of benthic processes such as spawning on pelagic
communities

lllustrations: modified from NOAA

16



Holoplankton: spend all of Meroplankton: spend only part
their life cycle as plankton of their life cycle as plankton

Ratios reflect influence of benthic processes such as spawning on pelagic
communities

These interactions influence community composition, production, and prey
availability for higher trophic levels

17

lllustrations: modified from NOAA
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CTD data by Dr. Rich
Pawlowicz, UBC

Seasonal oceanographic conditions

Strong seasonal patterns

1S-2 | | 1S-4 | | 1S-6

Seasonal stratification begins in
spring and strengthens through

Temperature dec C
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E B o 12
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00, . Deep waters remain cold and
- saline throughout the year

No strong differences between
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CTD data by Dr. Rich
Pawlowicz, UBC

Spring phytoplankton bloom

IS-2 || 1S-4 || 5-6

50 1

Spring bloom begins late march
for all stations

chl (mg/m®)
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Total Biovolume (mm®/m?)

/ooplankton seasonal trends 2024

Biovolume peaks between May to July

MMMMM

IS-6  Middle
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Total Biovolume (mm®/m?)

Total Abundance (individualslmz)
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/ooplankton seasonal trends 2024

Biovolume peaks between May to July

Abundance initially peaks in April and
reaching peak values in May/June
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Total Biovolume (mm®/m

Total Abundance (individuals/mz)
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/ooplankton seasonal trends 2024

Biovolume peaks between May to July

Abundance initially peaks in April and
reaching peak values in May/June

Shallowest site shows relatively high

2e+051

1e+05

abundance but lowest biovolume

» Suggests dominance of small, fast-
reproducing species in shallows

» Deeper stations likely have more
large, overwintering species

IS-6  Middle
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Meroplankton:Holoplankton ratios 2024

-
o

Ratio Biovolume
o
o

o
o

Shallowest site shows highest

ratios, coinciding with

increased production

» Suggests strong seasonal
coupling with the benthos
and larval retention

IS-6  Middle
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High relative meroplankton in shallows in May

| \| Shattow Deep Middle

I\ = | 154 || 56
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Taxa Group

. Actinopterygii
. Amphipoda
Annelida

. Appendicularia

. Bryozoa

. Calanoida <=2mm

. Calanoida >2mm

. Chaetognatha

. Cirripedia

. Cladocera
Cnidarians
Copepoda other
Cyclopoida

. Decapoda

. Echinodermata
Euphausiids
Heterobranchia
Mollusca

. Ostracoda

Other Crustacea



Igh relative meroplankton In shallows in May
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High relative meroplankton in shallows in May

Variations in depth influence strength of benthic
signals in zooplankton assemblages

Taxa Group
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Other Crustacea



How do these depth driven dynamics
Impact trophic energy transfer and species
composition over the bloom period?



Normalized Biovolume Size Spectra (NBSS)



NorTalized Biovolume Size Spectra (NBSS)
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Steeper slope Flatter slope

Normalized Biovolume Size Spectra (NBSS)

NBSS S|GDES During Bloom Period --
Station —= 15-2 = 154 —= |56
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Normalized Biovolume Size Spectra (NBSS)

NBSS S|GDES During Bloom Period --
Station —= 15-2 = 154 —= |56
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Normalized Biovolume Size Spectra (NBSS)

NBSS S|GDES During Bloom Period --
Station —= 15-2 = 154 —= |56
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Normalized Biovolume Size Spectra (NBSS)

NBSS S|GDES During Bloom Period --

Station —= 152 - 154 = |56
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Normalized Biovolume Size Spectra (NBSS)

NBSS S|CIDES During Bloom Period --
Station —= 15-2 = 154 —= |56
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NBSS: May

IS-6  Middle

NBSS Slopes During Bloom Period
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NBSS: June

NBSS Slopes During Bloom Period
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iovolume Slope
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NBSS: June

NBSS Slopes During Bloom Period
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Actinopterygii

Species composition
\
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Species composition

Size-structure patterns highlight how depth and
seasonal cycles shape zooplankton assemblage
structure and prey availability

Month
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Ctenophora
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Ostracoda
. Other Crustacea
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Species composition

Size-structure patterns highlight how depth and
seasonal cycles shape zooplankton assemblage
structure and prey availability

Deeper stations have more stable and energy-rich
zooplankton assemblages, supporting key prey taxa
for foragers such as juvenile salmon and herring
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Conclusions

Image analysis is capable of showing variability and seasonal
fluctuation in shallow, dynamic habitats

Variations in depth influence strength of benthic signals in zooplankton
assemblages

Deeper stations have more stable and energy-rich zooplankton
assemblages, supporting key prey taxa for foragers such as juvenile
salmon and herring
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Future work

Assess impact of oceanographic drivers, including indices of urbanization, on
nearshore zooplankton assemblages

Evaluate how depth and benthic driven effects vary interannually
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