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Overview
Methods

e Transfer ecological methods to human systems to describe changes in:
o Fishing locations of salmon fisheries

O Associated behavioral states (e.g., fishing, searching)

Preliminary Results:

e Methods were successfully validated by one independent data source
e Post marine heatwave (the”blob”), fishers spent more time searching for fish and
less time fishing

Importance:

e Understanding this is useful for:
o Conservation of threatened salmon stocks
o Understanding how fishing costs change over time

o Better estimates of CPUE



Rationale

Landed Weight and Revenue of Salmon Over Time - @ |ocation of fishing activity

Landed Weight shown as bars, Revenue shown as line
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e Climate change is projected to cause declines in landings
revenue

o Not felt evenly among geographic areas
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e 2007-2023
e Pacific Fisheries Information Network (PacFIN):
o Landings receipts data
o Vessel monitoring systems (VMS) data
o - New VMS-salmon landings “trip” data
e Previous studies have used VMS data to assess:

o Spatial fishing behavior (Janette et al., 2010; O’Farrell et al., 2019; Li et al., 2022)

o Fishing effort (Thoya et al., 2021; Zhao et al., 2021)

o Fishing uncertainty (Ducharme-Barth & Ahrens 2017)




Characterizing Fisher Movement

e Can we assess how fisher movement behavior has changed in response to variable
oceanographic conditions?
o E.g., hastime spent “searching” for fish increased over time as salmon shift
their range into more suitable habitats and fishers adjust their behavior to

find them?
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Source: Li et al. (2022) - Yellow Sea prawn fishery




Characterizing Fisher Movement

e 1) Methods from fisheries economics:

o Artificial neural networks; random forest models
m  Shrimp, Yellow Sea (Li et al., 2022); Reef fish, Gulf of Mexico (O’Ferrell et al., 2024)

e 2) Methods from animal movement ecology:

O State-space models; hidden Markov models
m Blue whales (Hucke-Gaete et al., 2018); Pumas (Wang et al., 2015)




Methods - 1) State Space Model

Data gives us...
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Methods - 1) State Space Model

Fitting a SSM gives us unobserved true states:
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Methods - 1) State Space Model

e Fitting a SSM gives us unobserved true states:

O 1) Estimated true locations with regularized data
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Methods - 1) State Space Model

e Fitting a SSM gives us unobserved true states:

O 1) Estimated true locations with regularized data

m — calculated movement metrics
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Preliminary Results - 1) State Space Model

Estimated Continuous Behavioral States for Salmon Trip ID 16578
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Preliminary Results - State Space Model
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Methods - 2) Hidden Markov Model

® Previously, fitting a SSM gave us continuous estimated behavioral states at

each timestep
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Methods - 2) Hidden Markov Model

e Now, fitting a HMM gives us...
o Distinct estimated behavioral states at each time step
O Probabilities of transitioning from one behavior to the other
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Latitude

Preliminary Results - 2) Four State Hidden Markov Model

Estimated Behavioral States for Salmon Trip ID 16575
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Preliminary Results - 2) Four State Hidden Markov Model

Estimated Behavioral States for Salmon Trip ID 16575
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Preliminary Results - 2) Four State Hidden Markov Model

Estimated Behavioral States for Salmon Trip ID 16575
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Preliminary Results - 2) Four State Hidden Markov Model

Estimated Behavioral States for Salmon Trip ID 16575
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Methods - 3) Model Validation

e Issue: Pacific salmon ocean troll fishery has no available data with which to
validate estimated fisher behaviors

e Solution: Validate estimated behaviors with independent data sources

O 1) Logbook records from the Pacific albacore troll fishery
m Similar to the salmon troll fishery
e Methods:
o0 1) Regularize data with a SSM
O 2) Estimate behavioral states with a HMM
m 2 state model
m 4 state model




Preliminary Results - 3) Two State Model Validation

Logbook States for Albacore Trip I1D 43390
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Preliminary Results - 3) Four State Model Validation

Logbook States for Albacore Trip ID 43390
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Preliminary Results - 3) Two State Model Validation

Logbook States for Albacore Trip ID 100047
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Preliminary Results - 3) Four State Model Validation

Logbook States for Albacore Trip 1D 1000
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Preliminary Results - 3) Model Validation

e Reasons for discrepancies include:
o Albacore loghook data is very noisy
m Some trip data is more “useful” than others
m Relies on fisher to note down activity and when it switches
O Coarse characterization of trip activities:
m Temporally (1 observation/day)

m Per behavior




Concluding Thoughts

e Methodological benefits:

O Uses less data

m "~ 33% of federally managed fisheries have logbook data
O Uses higher resolution data

m 1 observation/hour as opposed to 1/day
O Can betransferred to any fishery

e Methodological challenges:

O Run timeincreases with the addition of behavioral states and covariate
o Ability to differentiate between fishing and searching
m Lack of variance in turning angle between the two behaviors

® Next steps:

o 1) Interview commercial salmon fishers
O 2) Use groundfish observer data




Thank you!

cacourtierQucdayvis.edu

UNIVERSITY OF CALIFORNIA
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