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Fishery data sources & Challenges

Fishery-independent data (FID) - ;@ Fishery-dependent data (FDD) -
scientific surveys commercial fisheries
@ Standardized/Deterministic &« Fishing activity (e.g., logbooks
sampling. and AIS).
€ Wide spatial coverage. ¥ Long time span.
X Short time span. ¢ Short spatial coverage.
ld Many zeros. A Preferential sampling (PS).
@ Our scientific eye - broad but @ Fishers' eye - detailed but
limited in time. biased toward fishing grounds.
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Challenge

How can we combine broad but sparse surveys with dense but
biased fishing data to better understand fish distributions?

PELAGO acoustic survey AIS
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Goal: From Two Views of the Ocean to One Picture

Infer the spatio-temporal distribution of fish through a joint model that

> Combine standardized surveys and biased but detailed fishing data into a
single modeling framework to obtain a coherent view of sardine distribution
and abundance.

FID FDD
Scientific surveys Fishing activity

Joint model
Combines information
Predicts fish distribution

> Accounts for zero-inflation, PS and vessel catchability

> Deals with distinct scales of biomass index
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> PELAGO 2013-2017 survey series.
> 2362 sardine NASC values (mg m™2).

mg’ nm™

.0 300-1000

® 030 ® 1000-3000
30-100 & 3000-21000

100300
# 30-100 500-3000
® 10-30 # 100-500 3000-37000

> Commercial data obtained through AIS.
> 1687 sardine biomass values (Kg h™!).
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Hierarchy of Processes

Presence-absence observations

FDD locations  FID locations

-
aa

Biomass observations |

Linear predictor for
presence-absence
Observations — -
Linear predictor for .
biomass observatic R -
under presen
Ecological process
True fish biomass S (x, t)
Latent fields
influenced by

Sampling & behaviour
7 Fishing effort,
14 vessel effects

Sampling process

joint inference

. 2
Parameters

Spatiand

® Layers build from data — latent fields — sampling — catchability — likelihood.
® Allows us to integrate sources with different biases and scales.
® Ensures realistic fish distribution estimates with uncertainty.
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Observations layers

S(x,1) denotes the spatio-temporal process of interest (biomass/abundance index)
for location x € A c R?. and timer = {r;,--- , 17}
, two sub-processes are generated:
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Observations layers

S(x,1) denotes the spatio-temporal process of interest (biomass/abundance index)
for location x € A c R?. and timer = {r;,--- , 17}
, two sub-processes are generated:

Observed Data
S(x,1)
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Observations layers

S(x,1) denotes the spatio-temporal process of interest (biomass/abundance index)
for location x € A c R?. and timer = {r;,--- , 17}
, two sub-processes are generated:

Presence-absence
Z(x,t)

Observed Data
S(x,1)
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Observations layers

S(x,1) denotes the spatio-temporal process of interest (biomass/abundance index)
for location x € A c R?. and timer = {r;,--- , 17}
, two sub-processes are generated:

Presence-absence , . 0
‘ Bernoulli(nm(x,1)) ‘
Z(x,1) \ J

Observed Data
S(x,1)
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Observations layers

S(x,1) denotes the spatio-temporal process of interest (biomass/abundance index)
for location x € A c R?. and timer = {r;,--- , 17}
, two sub-processes are generated:

Presence-absence , . 0
‘ Bernoulli(nm(x,1)) ‘
Z(x,1) \ J

Observed Data
S(x,1) =
[ Positive catch }

Y(x, 1) =S(x1)|[(Z(x,1) = 1)
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Observations layers

S(x,1) denotes the spatio-temporal process of interest (biomass/abundance index)
for location x € A c R?. and timer = {r;,--- , 17}
, two sub-processes are generated:

Presence-absence , . 0
‘ Bernoulli(nm(x,1)) ‘
Z(x,1) \ J

[Pl e ‘ Gamma(a(x,t),b(x,t)) ‘
Y(x,1) =S(x,1)|[(Z(x,1) = 1) b,

Observed Data
S(x,1)
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Observations layers
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Observations layers

S(x,1) denotes the spatio-temporal process of interest (biomass/abundance index)

for location x € A c R?. and timer = {r;,--- , 17}
, two sub-processes are generated:

Presence-absence ( . ) )
‘ Bernoulli(nm(x,t))
Z(x,t) L J

Observed Data
S(x,1) = p N
[ IREEiive CEiE J—)‘ Gamma(a(x,t),b(x,t))
\

Y(x, 1) =S(x1)|[(Z(x,1) = 1)

J

Layers:
© PAP observations:
logit(m(x,1,i)) = & + zg.’;l FUK(C (o, 1,0),¢,1)) + V(%) +

® Biomass observations:
log({(x,t,0) =a+ Zle fK(C(j,x,1,0),¢,1)) +U(x) +

> i-th subperiod (e.g., day) within time ¢ (e.g, year).

> intercepts: o’ and a.

> smoother effects f(.) and f’(.) of covariates C(.) and C’(.).
> time-lagged effects K () of the covariates (Silva et al., 2024).

7/16 Daniela Silva Joint Fishery Data Sources



Latent fields layer

©@ PAP observations:

logit(n(x,1,i)) = & + zj’;l FUK(C(jox,t,0),¢,1)) + V(x) +

® Biomass observations:
log({(x,t,0)) =a+ ijl FK(C(j,x,t,0),¢,0)) +U(x) +
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Latent fields layer

©@ PAP observations:
logit(n(x,t,1)) = a’ + Z;’;l f(K(C'(f,x,t,0),¢, 1)) +V(x) +

® Biomass observations:
log({(x,t,0) =a+ Z;’:l FK(C(j,x,t,0),¢,1))+U(x) +

© Latent fields layer:
> W(x,t): shared based on a first-order autoregressive process:
W(x,t) = SW(x,t — 1)+ £(x, 1)

Each year’s spatial field depends on the previous one.

> U(x), V(x): spatial structure associated.

> £,U,V~GRF(0,2r(¢F, 1712,)) [or a Barrier model (Bakka et al., 2019) when the study
region presents a peluliar shape or physical barriers].
Spatial correlation

Cov[F(x),F(x)] = o exp(*M)

PF

Nearby locations have similar abundances.
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Sampling process layer

® Sampling process:

Data

*
source: Az Fele
Type: Homogeneous Poisson Inhomogeneous Poisson
Nature: Random/Systematic Preferential
Modeled i e XP (1) ~IPP(A(xP, 1))
by: X(8) ~HPP(ATER(0) 100D, 1)) = o' (1) + B/ (1) V(x) + B()U(x)
Drivers: None Dependent on Uand V

*Notes:
* Following Diggle et al. (2010).

. and quantify the

by scaling the relationship between the

local fishing intensity and the local value of each process of interest Z(.,7) and Y (., r) for

time r.

9/16 Daniela Silva

Joint Fishery Data Sources



Catchability effects layer

Issue: Different vessels have different efficiency k(vg) Tlarge
(e.g., gear, size, technology, crew).
- Vessel B
habili ffect: .
© Catchability effect high catch

L(x,t,1,v) =k(v) X

* with the u(x,t,i) (where low catch
the relative biomass process S* = Z - Y*), Fish biomass
k(va) | small

® and expected biomass ¢ (x,t,i,V)
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Catchability effects layer

Issue: Different vessels have different efficiency k(vg) Tlarge
(e.g., gear, size, technology, crew).
- Vessel B
habili ffect: .
© Catchability effect high catch

L(x,t,1,v) =k(v) X

* with the u(x,t,i) (where low catch
the relative biomass process S* = Z - Y*), Fish biomass
k(va) | small

® and expected biomass ¢ (x,t,i,V)

The catchability for vessel v is given by

k(v) = exp{ac + ZjLy fo(F(h,v)) +7c(v)}

> a.: intercept,
> fo: smoother term for fixed effects F (vessel attributes),

> ye ~ Normal(0, o2, ): vessel-specific random effect (i.i.d.)
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Inference & Summary

Likelihood factorization:
L(©) =L(u, v;y) x L(7;2) x L(A;%)
xL(ou, pu) X L(ov, ¢pv)
xL(ow, ¢w, )
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Inference & Summary

Likelihood factorization:
L(©) =L(u, v;y) x L(7;2) x L(A;%)
xL(ou, pu) X L(ov, ¢pv)
xL(ow, ¢w, )

> Inference via Laplace approximation

> Implemented with Template Model
Builder (TMB-R package)

> Likelihood coded in C++ template
functions (Kristensen et al., 2016)
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Inference & Summary

FID FDD
(surveys) (commerC|aI/AIS)

Likelihood factorization:

L(O) =L(p, v5y) X L(7;2) X L(A;%) ey tf S
atent fields
xLlou. ¢u) x Llov. dv) U (x) (spatial, biomass)
xL(ow, pw, 6) V(x) (spatial, presence)

W (x,1) (shared spatio-temporal,
AR(1) in time)

4 N
nference (I ey

> Inference via Laplace approximation / X (¢) ~HPP(Aupp (1))
Xp (1) ~IPP(A(x, 1)),

log A(x,1) = a”(¢) + B’ (1) V(x) + B(1)U(x)
k(v) = exp{ac + X fc(F(h,v)) +yc(v)}
¢ [

Joint Likelihood / Inference ]k/

> Implemented with Template Model
Builder (TMB-R package)

> Likelihood coded in C++ template
functions (Kristensen et al., 2016) \ [
L

- ~

(©) = L(p, v5y) L(m;2) L(A;x) -+
Inference: Laplace approx. (TMB)
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Results

Preferential effects

& Preferential effect: Fishers tend to go where sardine are abundant.
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Results

Preferential effects Catchability effects

& Preferential effect: Fishers tend to go where sardine are abundant.
i, Catchability effect: Larger and better equipped vessels catch more fish.
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Results

Preferential effects Catchability effects
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& Preferential effect: Fishers tend to go where sardine are abundant.
i, Catchability effect: Larger and better equipped vessels catch more fish.
@ Environmental effect: Temperature and plankton drive sardine distribution.
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Results: Case study - Predictions and respective Std. error

Std. Error{Z] Std. Error[Y]

2017-05-16

100-200
200-400
400-750
750-1500
1500-5500

2018-05-14
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Conclusions

* We integrate multiple data sources to
improve knowledge of sardine distribution.

® We quantify uncertainty and account for /
fisher behavior and gear efficiency. {
/

® This approach can support management /
decisions and can be extended to other /
species. (
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Conclusions

* We integrate multiple data sources to
improve knowledge of sardine distribution.

® We quantify uncertainty and account for /
fisher behavior and gear efficiency. {

® This approach can support management
decisions and can be extended to other /
species. (

Future work

% Expand the model to look at predator distribution jointly alongside
SPF - planned under Activity 1 of PICES-ICES WG53.
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