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Fishery-independent data (FID) -
scientific surveys

Standardized/Deterministic
sampling.
Wide spatial coverage.
Short time span.
Many zeros.

Our scientific eye - broad but
limited in time.

Fishery-dependent data (FDD) -
commercial fisheries

Fishing activity (e.g., logbooks
and AIS).
Long time span.
Short spatial coverage.
Preferential sampling (PS).

Fishers’ eye - detailed but
biased toward fishing grounds.
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Fishery data sources & Challenges
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How can we combine broad but sparse surveys with dense but
biased fishing data to better understand fish distributions?

PELAGO acoustic survey AIS
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Challenge
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Infer the spatio-temporal distribution of fish through a joint model that
▷ Combine standardized surveys and biased but detailed fishing data into a

single modeling framework to obtain a coherent view of sardine distribution
and abundance.

FID
Scientific surveys

FDD
Fishing activity

Joint model
Combines information

Predicts fish distribution

▷ Accounts for zero-inflation, PS and vessel catchability
▷ Deals with distinct scales of biomass index
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Goal: From Two Views of the Ocean to One Picture
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FID
▷ PELAGO 2013-2017 survey series.
▷ 2362 sardine NASC values (𝑚𝑔 𝑚−2).

FDD
▷ Commercial data obtained through AIS.
▷ 1687 sardine biomass values (𝐾𝑔 ℎ−1).
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Data
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Observed data

Ecological process
True fish biomass 𝑆 (x, 𝑡 )

Sampling & behaviour
Fishing effort,
vessel effects

Predictions 𝑆 (𝑥, 𝑡 ) &
Uncertainty std. errors

statistical link

influenced by

joint inference

• Layers build from 𝑑𝑎𝑡𝑎→ 𝑙𝑎𝑡𝑒𝑛𝑡 𝑓 𝑖𝑒𝑙𝑑𝑠 → 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔→ 𝑐𝑎𝑡𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡 𝑦 → 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑.
• Allows us to integrate sources with different biases and scales.
• Ensures realistic fish distribution estimates with uncertainty.
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Hierarchy of Processes
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𝑆 (x, 𝑡 ) denotes the spatio-temporal process of interest (biomass/abundance index)
for location x ∈ A ⊂ R2. and time 𝑡 = {𝑡1, · · · , 𝑡𝑇 }.
To handling zero-inflation, two sub-processes are generated:

Observed Data
𝑆 (x, 𝑡 )

Presence-absence
𝑍 (x, 𝑡 ) 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝜋 (x, 𝑡 ) )

Positive catch
𝑌 (x, 𝑡 ) = 𝑆 (x, 𝑡 ) | (𝑍 (x, 𝑡 ) = 1) 𝐺𝑎𝑚𝑚𝑎 (𝑎 (x, 𝑡 ) , 𝑏 (x, 𝑡 ) )

Joint distribution:
[𝑆 (x, 𝑡 ) ] = [𝑍 (x, 𝑡 ) ] [𝑌 (x, 𝑡 ) ]

Layers:
1 PAP observations:

𝑙𝑜𝑔𝑖𝑡 (𝜋(x, 𝑡, 𝑖)) = 𝛼′ +∑𝑝′

𝑗=1 𝑓
′ (𝐾 (𝐶′ ( 𝑗 , x, 𝑡, 𝑖), 𝑐, 𝑙)) +𝑉 (x) +𝑊 (x, 𝑡)

2 Biomass observations:
𝑙𝑜𝑔(𝜁 (x, 𝑡, 𝑖)) = 𝛼 +∑𝑝

𝑗=1 𝑓 (𝐾 (𝐶 ( 𝑗 , x, 𝑡, 𝑖), 𝑐, 𝑙)) +𝑈 (x) +𝑊 (x, 𝑡)

▷ 𝑖-th subperiod (e.g., day) within time 𝑡 (e.g, year).
▷ intercepts: 𝛼′ and 𝛼.
▷ smoother effects 𝑓 (.) and 𝑓 ′ (.) of covariates 𝐶 (.) and 𝐶′ (.) .
▷ time-lagged effects 𝐾 ( ) of the covariates (Silva et al., 2024).
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Observations layers
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1 PAP observations:
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𝑗=1 𝑓
′ (𝐾 (𝐶′ ( 𝑗 , x, 𝑡, 𝑖), 𝑐, 𝑙)) +𝑉 (x) +𝑊 (x, 𝑡)
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𝑗=1 𝑓 (𝐾 (𝐶 ( 𝑗 , x, 𝑡, 𝑖), 𝑐, 𝑙)) +𝑈 (x) +𝑊 (x, 𝑡)

3 Latent fields layer:
▷ 𝑊 (x, 𝑡 ) : shared spatio-temporal structure based on a first-order autoregressive process:

𝑊 (x, 𝑡 ) = 𝛿𝑊 (x, 𝑡 − 1) + 𝜉 (x, 𝑡 )

Each year’s spatial field depends on the previous one.

▷ 𝑈 (x) , 𝑉 (x) : spatial structure associated.

▷ 𝜉 ,U,V ∼ GRF(0, Σ𝐹 (𝜙𝐹 , 𝜎2
𝐹
) ) [or a Barrier model (Bakka et al., 2019) when the study

region presents a peluliar shape or physical barriers].
Spatial correlation

Cov[𝐹 (x) , 𝐹 (x′ ) ] = 𝜎2
𝐹 exp

(
− ∥x − x′ ∥

𝜙𝐹

)
Nearby locations have similar abundances.
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▷ 𝜉 ,U,V ∼ GRF(0, Σ𝐹 (𝜙𝐹 , 𝜎2
𝐹
) ) [or a Barrier model (Bakka et al., 2019) when the study

region presents a peluliar shape or physical barriers].
Spatial correlation

Cov[𝐹 (x) , 𝐹 (x′ ) ] = 𝜎2
𝐹 exp

(
− ∥x − x′ ∥

𝜙𝐹

)
Nearby locations have similar abundances.

Latent fields layer
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4 Sampling process:

Data
source: FID FDD*

Type: Homogeneous Poisson Inhomogeneous Poisson

Nature: Random/Systematic Preferential

Modeled
by: X𝐼 (𝑡 ) ∼ 𝐻𝑃𝑃 (𝜆𝐻𝑃𝑃 (𝑡 ) ) X𝐷 (𝑡 ) ∼ 𝐼𝑃𝑃 (𝜆(x𝐷 , 𝑡 ) )

𝑙𝑜𝑔 (𝜆(x𝐷 , 𝑡 ) ) = 𝛼′′ (𝑡 ) + 𝛽′ (𝑡 )𝑉 (x) + 𝛽 (𝑡 )𝑈 (x)

Drivers: None Dependent on U and V

*Notes:
• Following Diggle et al. (2010).

• 𝛽′ (𝑡 ) and 𝛽 (𝑡 ) quantify the degree of spatial PS by scaling the relationship between the
local fishing intensity and the local value of each process of interest 𝑍 (., 𝑡 ) and 𝑌 (., 𝑡 ) for
time 𝑡 .
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Issue: Different vessels have different efficiency
(e.g., gear, size, technology, crew).

5 Catchability effect:

𝜁 (x, 𝑡 , 𝑖, 𝑣) = 𝑘 (𝑣) × 𝜇 (x, 𝑡 , 𝑖)

• with the expected relative biomass 𝜇 (x, 𝑡 , 𝑖) (where
the relative biomass process S∗ = Z · Y∗),

• and expected biomass 𝜁 (x, 𝑡 , 𝑖, 𝑣)
Fish biomass

𝜇 (𝑥, 𝑡 )

Vessel A

Vessel B

𝑘 (𝑣𝐴) ↓ small

𝑘 (𝑣𝐵 ) ↑ large

low catch

high catch

The catchability for vessel 𝑣 is given by

𝑘 (𝑣) = 𝑒𝑥𝑝{𝛼𝑐 +
∑𝐻
ℎ=1 𝑓𝑐 (𝐹 (ℎ, 𝑣)) + 𝛾𝑐 (𝑣)}

▷ 𝛼𝑐 : intercept,

▷ 𝑓𝑐 : smoother term for fixed effects 𝐹 (vessel attributes),

▷ 𝛾𝑐 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 (0, 𝜎2
𝛾𝑐

) : vessel-specific random effect (i.i.d.)
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Likelihood factorization:

L(Θ) =L(𝜇, 𝜐; y) × L(𝜋; z) × L(𝜆; x)
×L(𝜎𝑈 , 𝜙𝑈 ) × L(𝜎𝑉 , 𝜙𝑉 )
×L(𝜎𝑊 , 𝜙𝑊 , 𝛿 )

Inference

▷ Inference via Laplace approximation
▷ Implemented with Template Model

Builder (TMB-R package)
▷ Likelihood coded in C++ template

functions (Kristensen et al., 2016)

FID
(surveys)

FDD
(commercial/AIS)

Latent fields
𝑈 (x) (spatial, biomass)
𝑉 (x) (spatial, presence)

𝑊 (x, 𝑡 ) (shared spatio-temporal,
AR(1) in time)

Sampling & Catchability
𝑋𝐼 (𝑡 ) ∼ HPP(𝜆HPP (𝑡 ) )
𝑋𝐷 (𝑡 ) ∼ IPP(𝜆(x, 𝑡 ) ) ,

log 𝜆(x, 𝑡 ) = 𝛼′′ (𝑡 ) + 𝛽′ (𝑡 )𝑉 (x) + 𝛽 (𝑡 )𝑈 (x)
𝑘 (𝑣) = exp{𝛼𝑐 +∑

𝑓𝑐 (𝐹 (ℎ, 𝑣) ) + 𝛾𝑐 (𝑣) }

Joint Likelihood / Inference
𝐿 (Θ) = 𝐿 (𝜇, 𝜐; 𝑦) 𝐿 (𝜋; 𝑧) 𝐿 (𝜆; 𝑥 ) · · ·

Inference: Laplace approx. (TMB)
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Preferential effects

Catchability effects

Environmental effects

Preferential effect: Fishers tend to go where sardine are abundant.

Catchability effect: Larger and better equipped vessels catch more fish.

Environmental effect: Temperature and plankton drive sardine distribution.
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Results: Case study - Predictions and respective Std. error
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• We integrate multiple data sources to
improve knowledge of sardine distribution.

• We quantify uncertainty and account for
fisher behavior and gear efficiency.

• This approach can support management
decisions and can be extended to other
species.

Future work

Expand the model to look at predator distribution jointly alongside
SPF - planned under Activity 1 of PICES-ICES WG53.
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