

**Innovative Approaches and
Applications to Foster Resilience
in North Pacific Ecosystems**

Right to reproduce kindly granted by
The Yokohama Archives of History Museum

**Portuguese Institute for the Sea and Atmosphere (IPMA)
Centre of Mathematics (CMAT), University of Minho**

**Integrating fishery-dependent and independent data to
model sardine distribution under environmental variability in
Portuguese waters**

Daniela Silva

daniela.dasilva@ipma.pt

[Joint work with: R. Menezes, G. Araújo, A. Machado, R. Rosa, A. Moreno, A. Silva, S. Garrido]

Nov 2025, 8-14

Fishery-independent data (FID) - scientific surveys

- ✓ Standardized/Deterministic sampling.
- 🌐 Wide spatial coverage.
- ⌚ Short time span.
- 📊 Many zeros.

💡 **Our scientific eye - broad but limited in time.**

Fishery-dependent data (FDD) - commercial fisheries

- 🐟 Fishing activity (e.g., logbooks and AIS).
- ⌚ Long time span.
- 📍 Short spatial coverage.
- ⚠️ Preferential sampling (PS).

💡 **Fishers' eye - detailed but biased toward fishing grounds.**

Challenge

How can we combine broad but sparse surveys with dense but biased fishing data to better understand fish distributions?

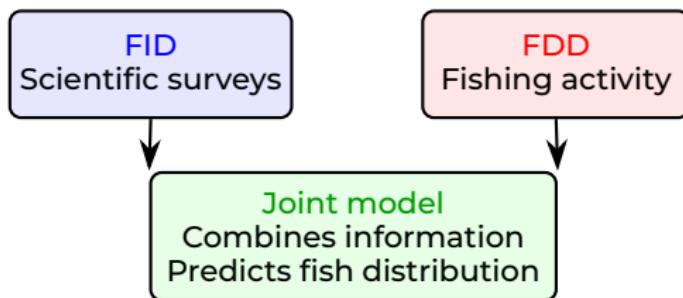
PELAGO acoustic survey

AIS

Goal: From Two Views of the Ocean to One Picture

Infer the spatio-temporal distribution of fish through a joint model that

- Combine **standardized surveys** and biased but detailed **fishing data** into a single **modeling framework** to obtain a coherent view of sardine distribution and abundance.



- Accounts for **zero-inflation**, **PS** and **vessel catchability**
- Deals with **distinct scales of biomass index**

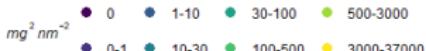
Data

FID

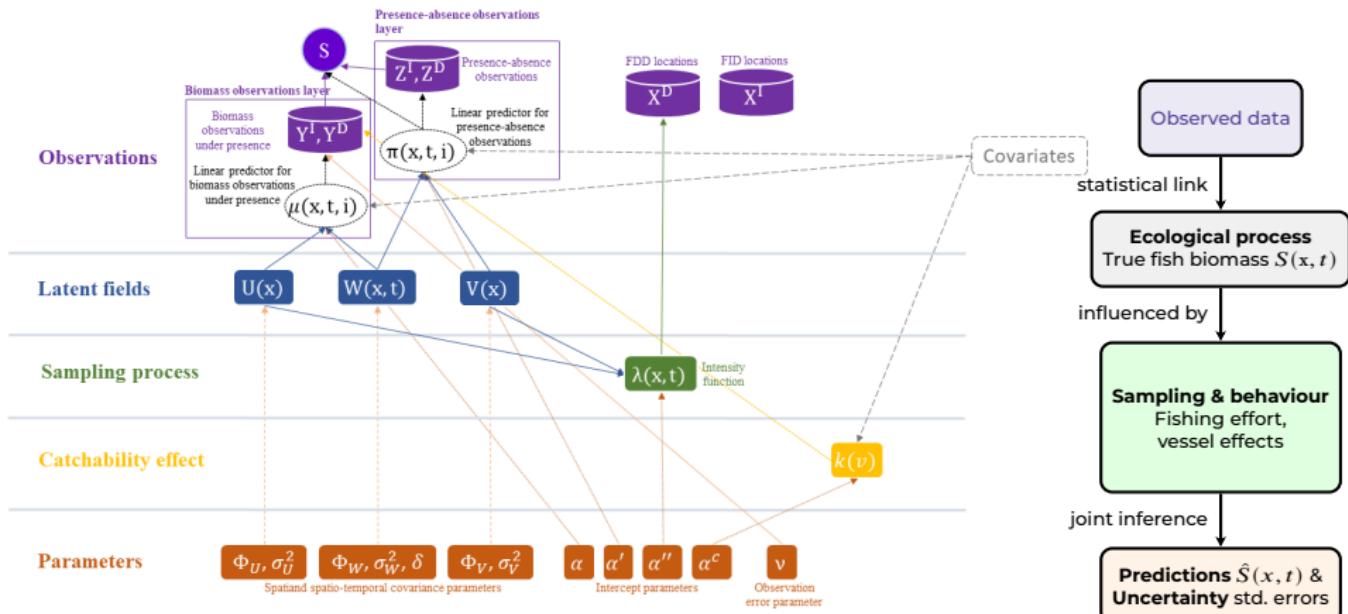
- ▷ PELAGO 2013-2017 [survey series](#).
- ▷ 2362 sardine NASC values ($mg\ m^{-2}$).

FDD

- ▷ Commercial data obtained through [AIS](#).
- ▷ 1687 sardine biomass values ($Kg\ h^{-1}$).



Hierarchy of Processes



- Layers build from *data* \rightarrow *latent fields* \rightarrow *sampling* \rightarrow *catchability* \rightarrow *likelihood*.
- Allows us to integrate sources with **different biases and scales**.
- Ensures **realistic fish distribution estimates with uncertainty**.

Observations layers

$S(x, t)$ denotes the **spatio-temporal process of interest** (biomass/abundance index) for location $x \in \mathcal{A} \subset \mathbb{R}^2$. and time $t = \{t_1, \dots, t_T\}$.

To handling zero-inflation, two sub-processes are generated:

Observations layers

$S(x, t)$ denotes the **spatio-temporal process of interest** (biomass/abundance index) for location $x \in \mathcal{A} \subset \mathbb{R}^2$. and time $t = \{t_1, \dots, t_T\}$.

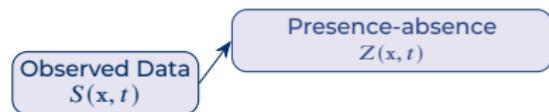
To handle zero-inflation, two sub-processes are generated:

Observed Data
 $S(x, t)$

Observations layers

$S(x, t)$ denotes the **spatio-temporal process of interest** (biomass/abundance index) for location $x \in \mathcal{A} \subset \mathbb{R}^2$. and time $t = \{t_1, \dots, t_T\}$.

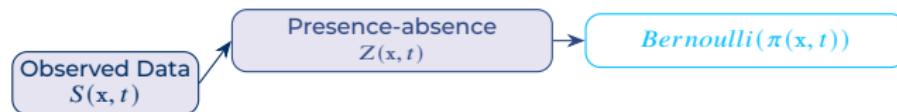
To handle zero-inflation, two sub-processes are generated:



Observations layers

$S(x, t)$ denotes the **spatio-temporal process of interest** (biomass/abundance index) for location $x \in \mathcal{A} \subset \mathbb{R}^2$. and time $t = \{t_1, \dots, t_T\}$.

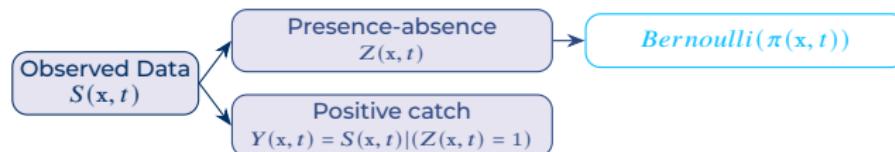
To handle zero-inflation, two sub-processes are generated:



Observations layers

$S(x, t)$ denotes the **spatio-temporal process of interest** (biomass/abundance index) for location $x \in \mathcal{A} \subset \mathbb{R}^2$. and time $t = \{t_1, \dots, t_T\}$.

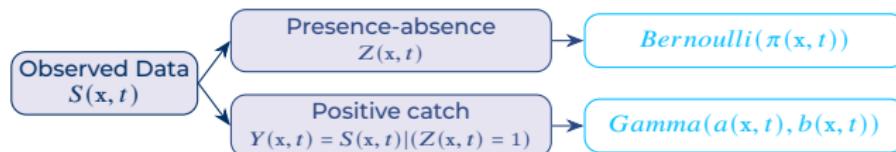
To handle zero-inflation, two sub-processes are generated:



Observations layers

$S(x, t)$ denotes the **spatio-temporal process of interest** (biomass/abundance index) for location $x \in \mathcal{A} \subset \mathbb{R}^2$. and time $t = \{t_1, \dots, t_T\}$.

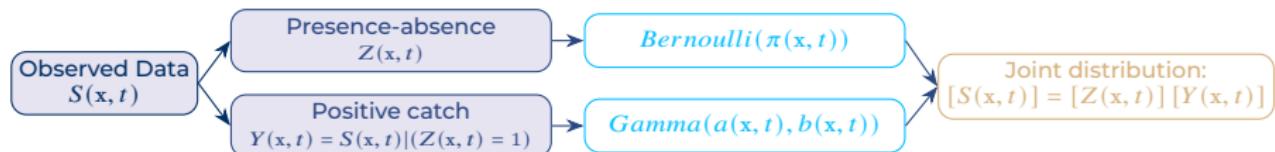
To handle zero-inflation, two sub-processes are generated:



Observations layers

$S(x, t)$ denotes the **spatio-temporal process of interest** (biomass/abundance index) for location $x \in \mathcal{A} \subset \mathbb{R}^2$. and time $t = \{t_1, \dots, t_T\}$.

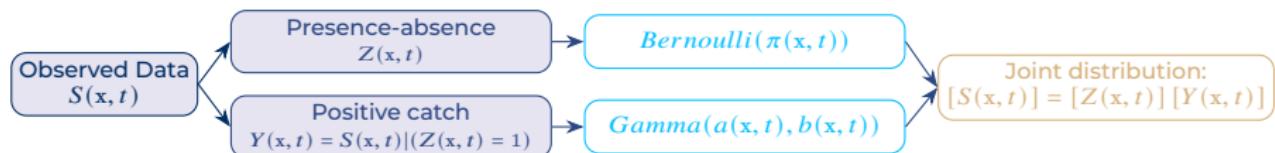
To handle zero-inflation, two sub-processes are generated:



Observations layers

$S(x, t)$ denotes the **spatio-temporal process of interest** (biomass/abundance index) for location $x \in \mathcal{A} \subset \mathbb{R}^2$. and time $t = \{t_1, \dots, t_T\}$.

To handle zero-inflation, two sub-processes are generated:



Layers:

① PAP observations:

$$\text{logit}(\pi(x, t, i)) = \alpha' + \sum_{j=1}^{p'} f'(K(C'(j, x, t, i), c, l)) + V(x) + W(x, t)$$

② Biomass observations:

$$\log(\zeta(x, t, i)) = \alpha + \sum_{j=1}^p f(K(C(j, x, t, i), c, l)) + U(x) + W(x, t)$$

- ▷ **i -th subperiod** (e.g., day) within time t (e.g., year).
- ▷ **intercepts:** α' and α .
- ▷ **smoother effects** $f(\cdot)$ and $f'(\cdot)$ of **covariates** $C(\cdot)$ and $C'(\cdot)$.
- ▷ **time-lagged effects** $K(\cdot)$ of the covariates (Silva et al., 2024).

Latent fields layer

① PAP observations:

$$\text{logit}(\pi(\mathbf{x}, t, i)) = \alpha' + \sum_{j=1}^{p'} f'(\textcolor{blue}{K}(\textcolor{green}{C}'(j, \mathbf{x}, t, i), c, l)) + \textcolor{brown}{V}(\mathbf{x}) + \textcolor{orange}{W}(\mathbf{x}, t)$$

② Biomass observations:

$$\log(\zeta(\mathbf{x}, t, i)) = \alpha + \sum_{j=1}^p f(\textcolor{blue}{K}(\textcolor{green}{C}(j, \mathbf{x}, t, i), c, l)) + \textcolor{brown}{U}(\mathbf{x}) + \textcolor{orange}{W}(\mathbf{x}, t)$$

① PAP observations:

$$\text{logit}(\pi(\mathbf{x}, t, i)) = \alpha' + \sum_{j=1}^{p'} f'(\textcolor{blue}{K}(\textcolor{green}{C}'(j, \mathbf{x}, t, i), c, l)) + \textcolor{brown}{V}(\mathbf{x}) + \textcolor{orange}{W}(\mathbf{x}, t)$$

② Biomass observations:

$$\log(\zeta(\mathbf{x}, t, i)) = \alpha + \sum_{j=1}^p f(\textcolor{blue}{K}(\textcolor{green}{C}(j, \mathbf{x}, t, i), c, l)) + \textcolor{brown}{U}(\mathbf{x}) + \textcolor{orange}{W}(\mathbf{x}, t)$$

③ Latent fields layer:

- ▷ $W(\mathbf{x}, t)$: shared **spatio-temporal structure** based on a **first-order autoregressive process**:

$$W(\mathbf{x}, t) = \delta W(\mathbf{x}, t - 1) + \xi(\mathbf{x}, t)$$

Each year's spatial field depends on the previous one.

- ▷ $U(\mathbf{x}), V(\mathbf{x})$: **spatial structure associated**.
- ▷ $\xi, \mathbf{U}, \mathbf{V} \sim \text{GRF}(0, \Sigma_F(\phi_F, \sigma_F^2))$ [or a Barrier model (Bakka et al., 2019) when the study region presents a peculiar shape or physical barriers].

Spatial correlation

$$\text{Cov}[F(\mathbf{x}), F(\mathbf{x}')] = \sigma_F^2 \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|}{\phi_F}\right)$$

Nearby locations have similar abundances.

Sampling process layer

④ Sampling process:

Data source:	FID	FDD*
Type:	Homogeneous Poisson	Inhomogeneous Poisson
Nature:	Random/Systematic	Preferential
Modeled by:	$X^I(t) \sim HPP(\lambda^{HPP}(t))$	$X^D(t) \sim IPP(\lambda(x^D, t))$ $\log(\lambda(x^D, t)) = \alpha''(t) + \beta'(t)V(x) + \beta(t)U(x)$
Drivers:	None	Dependent on U and V

*Notes:

- Following Diggle et al. (2010).
- $\beta'(t)$ and $\beta(t)$ quantify the **degree of spatial PS** by scaling the relationship between the local fishing intensity and the local value of each process of interest $Z(., t)$ and $Y(., t)$ for time t .

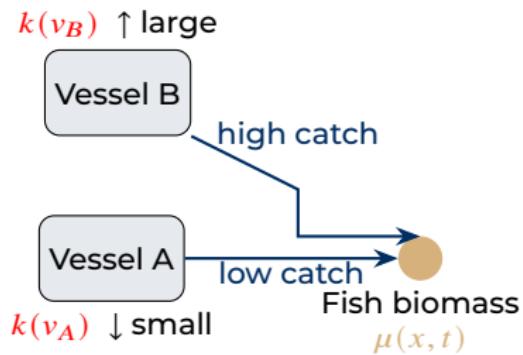
Catchability effects layer

Issue: Different vessels have different efficiency
(e.g., gear, size, technology, crew).

⑤ Catchability effect:

$$\zeta(x, t, i, v) = k(v) \times \mu(x, t, i)$$

- with the **expected relative biomass** $\mu(x, t, i)$ (where the relative biomass process $S^* = Z \cdot Y^*$),
- and **expected biomass** $\zeta(x, t, i, v)$



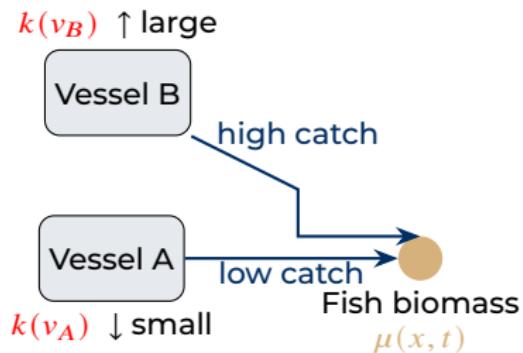
Catchability effects layer

Issue: Different vessels have different efficiency
(e.g., gear, size, technology, crew).

5 Catchability effect:

$$\zeta(x, t, i, v) = k(v) \times \mu(x, t, i)$$

- with the **expected relative biomass** $\mu(x, t, i)$ (where the relative biomass process $S^* = Z \cdot Y^*$),
- and **expected biomass** $\zeta(x, t, i, v)$



The catchability for vessel v is given by

$$k(v) = \exp\{\alpha_c + \sum_{h=1}^H f_c(F(h, v)) + \gamma_c(v)\}$$

- α_c : intercept,
- f_c : smoother term for fixed effects F (vessel attributes),
- $\gamma_c \sim \text{Normal}(0, \sigma_{\gamma_c}^2)$: vessel-specific random effect (i.i.d.)

Likelihood factorization:

$$\begin{aligned}\mathcal{L}(\Theta) = & \mathcal{L}(\mu, \nu; y) \times \mathcal{L}(\pi; z) \times \mathcal{L}(\lambda; x) \\ & \times \mathcal{L}(\sigma_U, \phi_U) \times \mathcal{L}(\sigma_V, \phi_V) \\ & \times \mathcal{L}(\sigma_W, \phi_W, \delta)\end{aligned}$$

Likelihood factorization:

$$\begin{aligned}\mathcal{L}(\Theta) = & \mathcal{L}(\mu, \nu; y) \times \mathcal{L}(\pi; z) \times \mathcal{L}(\lambda; x) \\ & \times \mathcal{L}(\sigma_U, \phi_U) \times \mathcal{L}(\sigma_V, \phi_V) \\ & \times \mathcal{L}(\sigma_W, \phi_W, \delta)\end{aligned}$$

Inference

- ▷ Inference via [Laplace approximation](#)
- ▷ Implemented with Template Model Builder ([TMB-R package](#))
- ▷ Likelihood coded in C++ **template functions** ([Kristensen et al., 2016](#))

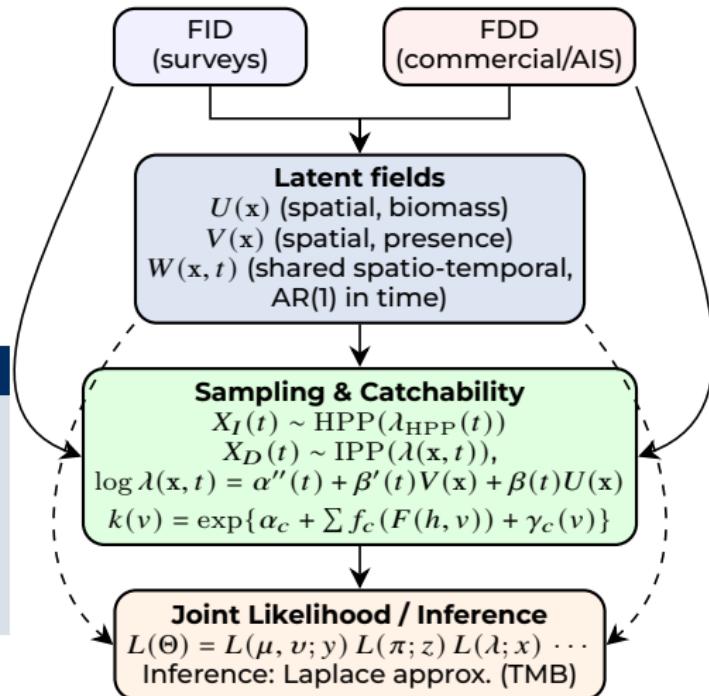
Inference & Summary

Likelihood factorization:

$$\begin{aligned}\mathcal{L}(\Theta) = & \mathcal{L}(\mu, \nu; y) \times \mathcal{L}(\pi; z) \times \mathcal{L}(\lambda; x) \\ & \times \mathcal{L}(\sigma_U, \phi_U) \times \mathcal{L}(\sigma_V, \phi_V) \\ & \times \mathcal{L}(\sigma_W, \phi_W, \delta)\end{aligned}$$

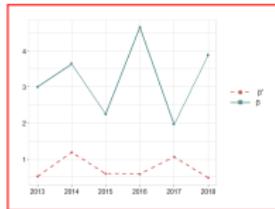
Inference

- ▷ Inference via [Laplace approximation](#)
- ▷ Implemented with Template Model Builder ([TMB-R package](#))
- ▷ Likelihood coded in [C++ template functions](#) ([Kristensen et al., 2016](#))



Results

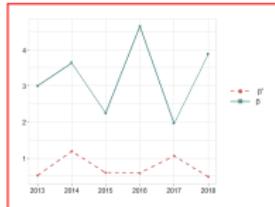
Preferential effects



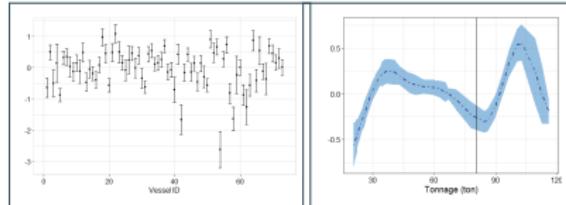
 Preferential effect: Fishers tend to go where sardine are abundant.

Results

Preferential effects



Catchability effects

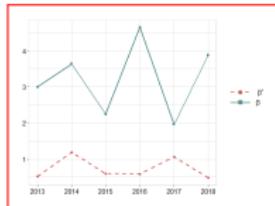


 Preferential effect: Fishers tend to go where sardine are abundant.

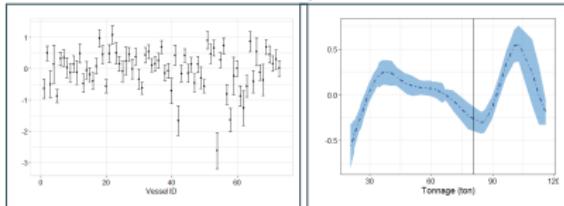
 Catchability effect: Larger and better equipped vessels catch more fish.

Results

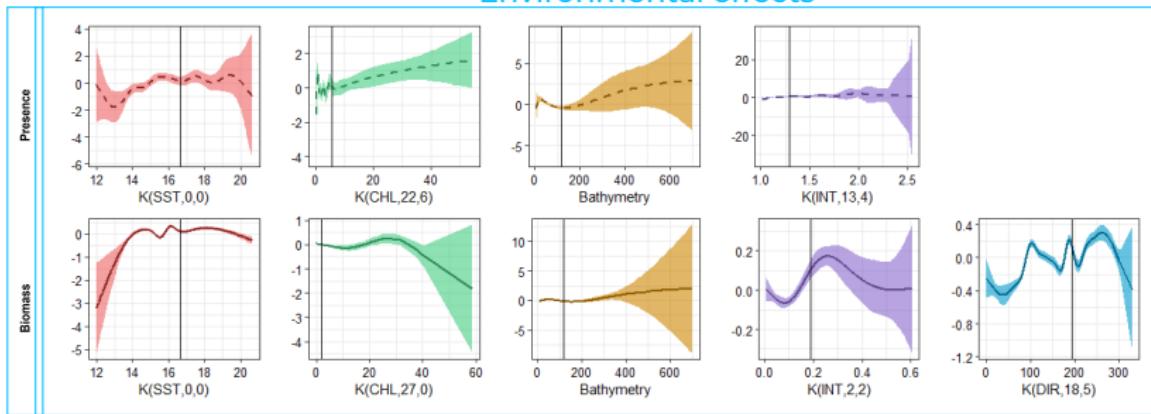
Preferential effects



Catchability effects



Environmental effects



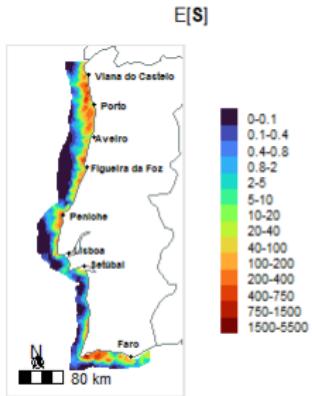
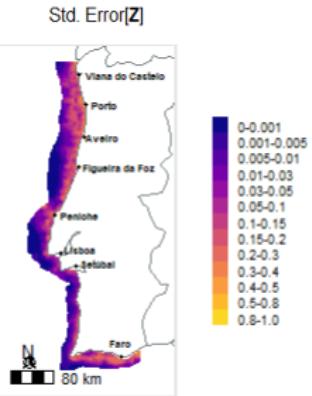
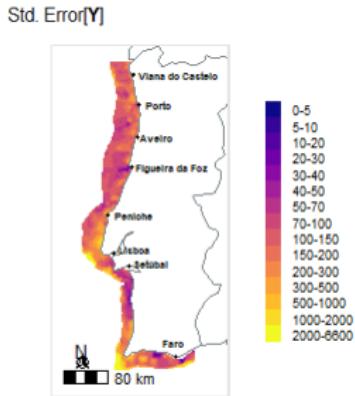
Preferential effect: Fishers tend to go where sardine are abundant.

Catchability effect: Larger and better equipped vessels catch more fish.

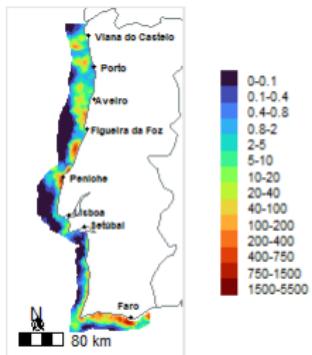
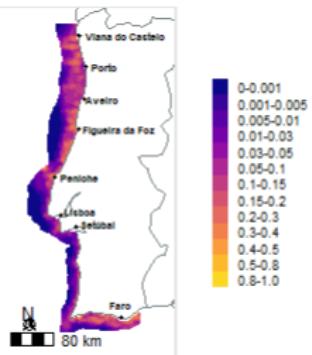
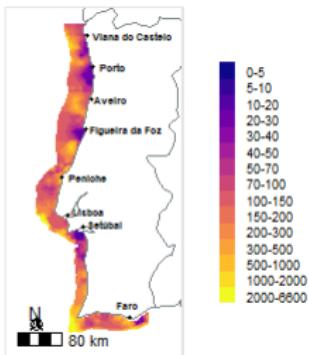
Environmental effect: Temperature and plankton drive sardine distribution.

Results: Case study - Predictions and respective Std. error

2017-05-16



2018-05-14



Conclusions

- We **integrate multiple data sources** to improve knowledge of sardine distribution.
- We **quantify uncertainty** and account for fisher behavior and gear efficiency.
- This approach can **support management decisions** and can be extended to other species.

Conclusions

- We **integrate multiple data sources** to improve knowledge of sardine distribution.
- We **quantify uncertainty** and account for fisher behavior and gear efficiency.
- This approach can **support management decisions** and can be extended to other species.

Future work

- Expand the model to look at predator distribution jointly alongside SPF - **planned under Activity 1 of PICES-ICES WG53.**

Thank you for your attention

This study was supported by Portuguese funds through the **UID/00013: Centro de Matemática da Universidade do Minho (CMAT/UM)** and by the **European Maritime and Fisheries Fund (MAR-01.04.02-FEAMP-0009)** through the **SARDINHA2030 project**.

References

Bakka, H., Vanhatalo, J., Illian, J. B., Simpson, D., Rue, H. (2019). Non-stationary Gaussian models with physical barriers. *Spatial Statistics*, 29, 268-288.

Diggle, P., Menezes, R., Su, T. (2010). Geostatistical inference under preferential sampling. *Journal of the Royal Statistical Series C*, 59 (2), 191-232. <https://doi.org/10.1111/j.1467-9876.2009.00701.x>

Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H., Bell, B. (2016). TMB: automatic differentiation and Laplace approximation. *Journal of Statistical Software*, 70, 1-21. doi: 10.18637/jss.v070.i05

Le Cam, L. (1986). *Asymptotic Methods in Statistical Decision Theory*. SpringerVerlag.

Silva, D., Menezes, R., Araújo, G., Rosa, R., Moreno, A., Silva, A., Garrido, S. (2025). Joint model for zero-inflated data combining fishery-dependent and fishery-independent sources. *Spatial Statistics*, page 100930. <https://doi.org/10.1016/j.spasta.2025.100930>

Silva, D., Menezes, R., Moreno, A., Teles-Machado, A., Garrido, S. (2024). Environmental effects on the spatiotemporal variability of sardine distribution along the Portuguese continental coast. *JABES*. <https://doi.org/10.1007/s13253-023-00577-8>

Silva, D., Menezes, R., Serra-Pereira, B., Azevedo, M., Figueiredo, I. (2023). Adapting the sampling design of research surveys to improve the biomass estimation of secondary species—the case study of *Raja clavata*. *ICES Journal of Marine Science*, fsad089, <https://doi.org/10.1093/icesjms/fsad089>