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Global marine heatwave activities
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What is marine heatwave?
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Ocean dynamics and physical
conditions
: by current, vertical mixing, and

entrainment/detrainment
(Feng et al, 2013; Gao et al., 2010)

Atmospheric conditions
: by surface winds, cloud cover, and

radiation
(Chen and Qin, 2016; Oliver et al 2007)
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Marine heatwave in boreal summer (1982-2020)
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Classification into four major modes
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Spatial distribution and temporal information of MHWSs

Spatial distribution of MHWs
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Summary: Subtropical Gyre mode

Spatial pattern : SST
(SOM1 vs. trend (1982-2020)

(a) SG mode
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(b) ECS mode (18.5%) (b) East phina Sea mode ‘
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Unprecedented year of 2022: Hot SST extremes

(a) SST anomalies for July-August of 2022
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Characteristics of summer Marine heatwave in 2022
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Contributing factors of the MHW in 2022

Mixed-layer heat budget equation

aT, (Tm—=Taq)
dx M 3y Rn
ADV (horizontal advection) Vertical mixing
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(Early-phase of the MHWSs) The positive warming
tendency is generally related to ocean stratification caused
by the weakening of the vertical mixing.

(Mid-phase of the MHWSs) From mid-July, the effects of the
shortwave radiation on SST warming were dominant as
the anticyclonic circulation persisted.
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Spatiotemporal distribution of anomalous salinity water (SMAP)

SMAP sea surface salinity (8-day running) from June 18th to August 8th
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Unprecedented year of 2022: Floods
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What caused the long-lasting MHW In 20227

Decomposition of Qnet

0.40 aT \
] —--8SR ---STR —SH H \
0.20
0.00
-0.20
-0.40
o0 g @ [ le b b e e Y

O
Juni b:iuI‘I / Aug1 F W ep1i

Enhanced solar radiation

* The persistent high-pressure systems implies clear

skies with minimal cloud cover, allowing solar radiation
to reach the surface uninterrupted, thus sustaining the
marine heatwaves.

* Finally, the MHWSs declined because Typhoon

Hinnamnor blocked the sun light and intensified the wind

speed on early September.
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Possible causes: Stagnant atmospheric circulation
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« The CGT pattern can contribute to the convective activity over the
i Pakistan, and it can enhance the wave pattern to the far east to the

F1G. 15. Schematic diagram illustrating the entire mechanism of E aSt C h I n a Sea .
the CGT consisting of two scenarios during the positive phase of

CGTL The cloud denotes the strong ISM and the circles represent
the CGT in the upper level.




Summary of the record-breaking 2022 long-lasting marine heatwave
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Oh et al. (2023) The record-breaking 2022 long-lasting marine heatwaves in the East China Sea, Environmental Research

I Letters, 18, 064015 I



The Year 2023: A Short Relief...

East China Sea
[25° = 34°N, 120° - 128°E]
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» After several consecutive warm years, 2023 initially appeared somewhat cooler — ﬂ
even slightly below the marine heatwave threshold in the East China Sea. ccp



The Year 2023: A Short Relief... and Another Surprise

East China Sea
[25° = 34°N, 120° - 128°E]
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» Although it began later than usual, it persisted for more than 60 days —
nearly two months of continuous anomalous warming over the region.




Unusual Persistence of the 2023 Marine Heatwave
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» The intensity and frequency of the 2023 event were similar to, or slightly strong

er than, the 10-year average. @
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Why Did It Happen? (Mixed-Layer Heat Budget Analysis)
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Atmospheric Control of Late-Summer MHW Persistence
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* During this period, the Western North Pacific Subtropical Hi

L, = L..C-U — . gh (WNPSH) remained strong and stationary, which suppre
h PalwtE (qsea qalr) sses the usual seasonal shift to northerlies.

* In late summer, the latent heat flux became increasingly o _
important, controlled by wind speed and the humidity ~ * AS aresult, warm and humid air masses persisted over the

difference between the air and the ocean. East China Sea, reducing evaporation and prolonging tw
HW into late summer.
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Future changes in MHW days in the ECS
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* Under the hist-GHG scenario, representing greenhouse forcing, the number of marine heatwave days inc
reased by more than twofold compared with the historical run.

 Weaker wind speeds and a less evaporation in late summer can be found, which created favorable
conditions for the development of marine heatwaves.

» Our results suggest that late-summer marine heatwaves in the East China Sea are expected to become
more frequent under future climate warming. O\

Oh et al. (2024) Late-arriving 2023 summer marine heatwave in the East China Sea and implications for global warming, npj
Climate and Atmospheric Science, 7(1), 294



Implication: A Case of Typhoon Bavi (August 2020)
from Pun et al. (2023)
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Thank you for your attention ©
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