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Introduction

2 Coastal Trapped waves Coas‘tal trapped waves (CTWs) are wave phenomena in.which gnergy is concen.trated on the
continental shelf and propagates poleward along the coast, influencing coastal dynamics.

¢ Energy pathway:
Equatorial Kelvin waves (EKW) arrive from the central Pacific and reflect at the coast.

€ Coastal conversion:
Upon impact, part of their energy is converted into Coastal Trapped Waves (CTWs)

@ Coastal waveguide:

CTWs propagate parallel to the coastline, with maximum amplitude over the
continental shelf.

¢ Offshore decay:
Their amplitude decreases exponentially offshore.

- = = O
S b S & e

» Coastal trapped waves (CTW) are trapped to the continental shelf and slope, with
velocities that exponentially decay with distance offshore.




Introduction

+* Seasonal paradox
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lowest in the austral winter, when upwelling is at its peak. This
Hovmodller diagrams show (a) surface chlorophyll-a (mg m™) and (b) mixed-layer | contradicts the expectation that more intense upwelling
depth (m). Both fields are averaged along the 400-m isobath in the northern Peru should increase phytoplankton biomass.

sector.




1. Characterize coastal trapped waves (CTWs) in the Peruvian |
region during 2015-2020, using Empirical Orthogonal |
Functions (EOF) and wavelet analysis. !
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2. Evaluate the surface chlorophyll-a response to the passage of
CTWs, considering seasonal variability and the amplifying |
effect of the seasonal paradox. :
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Data and Methodology

¢ Area of study +* Data processing

* GLORYS12 Reanalysis

Pta. sal 205 ® Period: 2015-2020
* Variables: Sea Surface height (SSH), Mixed layer Depth (MLD), Chlorophyll-a
| o : (CHL)
: - Detilern, «  Spatial resolution: 0.083°, 0.083°, ~0.036°

region ” e Spatial domain: 4°S-7°S; 79,5° W-82° W

Pta. La Negra

8°S|
A PERU Filtering (Band-pass Butterworth): Isolate subseasonal variability linked to coastal
- P trapped waves (CTWs) and remove slower (seasonal) and faster noise.

Latitude

* Daily anomalies
* Along the 400-m isobath, 4°S to 7.0°S (N->S).

15 * Period band: 7-50 days

» The use of sea Surface high (SSH) time series on isobaths to analyze the
MW W W W Jew W propagation characteristics of CTWs has been widely applied in academic research
Longitude (Gelderloos et al., 2021; Poli et al., 2022, Hu, et al., 2024; Passaro, 2025)




Data and Methodology

+* Empirical Orthogonal Functions (EOF)

** Wavelet analysis method Torrence & Compo (1998)

The continuous wavelet transform will be used to decompose the time series
into the time-frequency space in order to identify the dominant modes of
CTWs variability.

- Wavelet coherence
Relative Phase

Preprocess:

* SSH and Chl - daily filtered anomalies.
e 400-m isobath
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Bathymetry of the Northern Peru continental shelf. The 400 m isobath is
highlighted (magenta), indicating the approximate position of the shelf break.



Results: Characteristics of Coastal Trapped Waves Based on Reanalysis Data

Wavelet Power Spectrum — PC1: SSH (2015-2020)
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Wavelet power spectrum of PC1 of SSH data (with bandpass filtering) to S1 and S2. The black lines indicating the 95%
confidence level and white shallow indicating the boundary below which the results are dubious.

Warm colors (red—orange) enclosed by
the black contour (95% confidence
level) represent statistically significant
CTW signals.

Downwelling CTWs detected between
2015 and 2020:

2015 (5 waves): Apr, Jun, Ago, Sep and
Nov.

2016 (2 waves): Feb and May

2017 (1 wave): Mar

2019 (2 waves): Apr and Nov

appear at around 10, 20, and 35 days.

* A ssignificant portion of the energy is concentrated in the frequency band between 7 and 50 days. Within this band, the most dominant spectral peaks




Results: Characteristics of Coastal Trapped Waves Based on Reanalysis Data

Wavelet Coherence / Phase - PC1 Signal SSH
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Results: Characteristics of Coastal Trapped Waves Based on Reanalysis Data
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Hovmoller diagram of band-pass-filtered sea surface height (SSH) anomalies along the 400-m
isobath, based on GLORYS12 reanalysis data.

Propagation Speed
Wavelet | Speed R2
2015 | CTW1 |127m/s| 092 | Apr
2015 | CTW2 |1.80m/s| 0.85 | Jun
2015 | CTW3 |240m/s| 074 | Aug
2015 | CTW4 |158m/s| 0.70 | Sep
2015 | CTW5 |153m/s| 0.88 | Nov
2016 CTW1 |1.83m/s| 0.69 Feb
2016 CTW2 |240m/s| 0.69 May
2019 | CTW1 |[2.04m/is| 076 | APr
2019 | CTW2 |o046m/s| 0.8 | Nov

Phase-lag vs. along-coast distance (linear
regression) on band-pass (7-50 d) SSH gives
c = 0.46-2.40 m/s across 4—7°S.

* Echevin et al., 2014: 2.48 + 0.40 m/s.
 Arellano et al., 2022: ~1.9 m/s

* Pietrietal., 2014: 1.2 +0.4 m/s

* Camayo & Campos, 2006: 1.85-3.94 m/s.
* Pizarro et al., 2001: 0.5-2.9 m/s.
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Results: Effect of Coastal Trapped Waves on Chl-a

CTW Impact on Chlorophyll: Seasons under the Seasonal Paradox/El Nifio (2015)
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005 seasonal nonlinearity.
0.1 1 1 | 1 1 | . L L
JAN FEB MAR APR MAY JUN JuL AUG SEP ocT NOV DEC
April peak August peak 6 ) September peak
r(all)=-0.453 e o ® Chi<0 r(all)=-0.189 ® Chi<0 r(ally=-0.710 ® Chi<0
r(Chl>0)=-0.620 O Chl=0 r(Chl>0)=0.132 © Chl=0 r(Chl>0)=-0.846 O  Chl>0
5 |{ r(Chl<0)=-0.037 (<) 5 fl r(Chl<0)=-0.243 1 5 {| r(Chl<0)=-0.365
4t 4r 4+
o)
o a )
~ 3 o o 250 — al
F? 0@ o o) 5 3 53
£ . (%Y £ E
=) Q5 o =)
E 5l e © ) E 2 £
= o = &) =
©
£ ) E & ° £
[s] o o] o
c 1r © c 1 o 1 c 1r
@ o) m© C% o] ©
7 00 %0 ® & B0 7 0
= ® T — fee) = e
Qor [SI] 110 or e,
L] o~ o . \
Ry Se 0 Ak ) b
1 . A;ﬁ f 2 1 1
e 3 s
0og @
2+ * 2+ 2t
3 ‘ ‘ : : : 3 : ; ‘ ‘ : 3 ‘ : ‘ :
006 -004 -002 0 0.02 0.04 0.06 0.08 -0.06 0.04  -0.02 0 0.02 0.04 0.06 0.08 006  -004 -002 0 0.02 0.04 0.06 0.08
SSH anomaly (m) SSH anomaly (m) SSH anomaly (m)

April (Autumn, MLD shallow):
System  decoupled, local
dominates.

forcing
August (Winter, MLD deep):
Peak intensity of seasonal paradox.

September (Spring, MLD transitioning):
Shows clearest CTW signal.

The strongest SSH-Chl coupling
occurs during seasonal transitions
(September), not when the
paradox is consolidated (August).




Results: Effect of Coastal Trapped Waves on Chl-a

CcTwW Impact on ChIorophyII Winter under the Seasonal Paradox/El Nifio (2015)
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e Positive Chl-a anomalies



@&

OPICES-2025 ¢ : | , e PICES-2025
B s T

Nov 8-14, 2025 |Yokohama, Japan

Innovative Approaches and
Applications to Foster Resilience
in North Pacific Ecosystems

Right to reproduce kindly granted by
The Yokobama Avchives of Mistary Musesm

Nov 11, 2025




	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12

