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Downscaled climate projections used in fisheries management strategy 
evaluation

(Holsman et al 2020)

Ideally want really 
big ensembles for 
management 
applications

These can be very 
costly!



CEFI NEP10k Domain and Hindcast Configuration

Bathymetry (right, in meters): GEBCO 2020

Temporal Extent: 1993-2019 (27 years)

Atmospheric Forcing: JRA-55

Tidal Forcing: TPXO 

River Forcing

Freshwater: GloFAS, Beamer et al., (2016; GoA)

Initial and Boundary Conditions

Ocean Physics: GLORYS12
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Surrogate Modeling

• MOTIVATION: Regional models are computationally expensive!
• Output from a complex model can be used to train a surrogate which 

compactly approximates the behavior of the full system
• The use of a compact surrogate allows a broader range of model 

experiments, e.g.:
– Quantify sensitivities to forcing and parameters
– Broaden ensemble of predictions

• Here, we explore the use of Machine Learning to construct a  3D surrogate 
(“emulator”) for a regional NEP model based on MOM6

• Machine Learning can include EOF analysis (a form of “unsupervised 
learning”)



EOFs have a long history of use to identify dominant 
geospatial patterns and their time variation

• Examples include:

– ENSO

– The Pacific Decadal Oscillation

• There are many others

– Some (e.g. NPGO) are not the leading mode of variability!



EOF analysis is based on 
Singular Value Decomposition
of a matrix

 
   

  
   

 
   

  
   

      

      

The two dimensions can really 

be anything:

space x time (univariate EOFs)

variable x time (Principal Components)

variable/space x time (multivariate EOFs)

FIGURE: By Cmglee - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?cu
rid=67853297



EOFs can represent signals propagating through 
space or across different variables

EOF decomposition (which is just Singular Value Decomposition of a matrix) typically 
uses a collection of time series at multiple locations:

   V(x,t) =  X1(x)*T1(t) + X2(x)*T2(t)  + ......

• The SVD-based calculation of these modes just sees a collection of time series, 
which can include multiple variables as well as multiple locations. 

• EOFs can represent a propagating signal (across space/time/variables) according to 
the algebraic equivalence:

   sin (kx - t) =  sin (kx)*cos (t) – cos (kx)*sin (t)

• Any rearrangement of the time series does not affect the resulting X and T! hence 
EOFs can even represent propagating signals with spatially variable phase speeds.



Advantages and disadvantages of EOFs

• Advantages
– Allow complete reconstruction of original data
– Orthogonal spatial and temporal modes

• Disadvantages
– Orthogonal spatial and temporal modes requirement may obscure simple 

signals (note Fourier decomposition does not require this)
– Chaotic, small-scale features will not be well captured (because 

spatially/temporarily irregular)
– Need a significant number of independent realizations of a pattern to get 

significant EOFs

• Other methods exist! Many are now used in Machine Learning



Principal Component analysis by itself can be used for 
hybrid dynamical-statistical downscaling

Hermann et al.  2021, Deep-Sea Res II



Recurrent Neural Networks can be used to relate 
two sets of time series (LSTM is a variant of this)

https://creativecommons.org/licenses/by-sa/4.0



Forcing variables 
applied to ROMS:

Tair, Uwind, Vwind, 
sward, lwrad, Pair, 
Qair, runoff

Regional 
Forcing 
PCs

Regional 
Forcing 
EOFs

Regional response:

T, S, SSH

Regional
Ocean 
PCs

Regional
Ocean 
EOFs

We dynamically downscale, calculate forcing and response EOFs of 
monthly anomalies, then train the ML model to relate the PCs

Forcing variables 
applied to regional 
model:
Tair, Uwind, Vwind, 
sward, lwrad, Pair, 
Qair

Regional 
Forcing 
PCs

Train
ML 

model
(LSTM)

Regional 
Forcing 
EOFs

• Include the past 12 months of forcing for training and emulation
• Include top 20 PCs of each forcing (2D) and top 20 PCs of each response variable (3D)
• Use 400 LSTM “neurons” in the LSTM
• Optimization target for each “training session” can be a single PC of a single regional response variable or 

can train all variables/modes simultaneously

Dynamical downscaling via MOM6-NEP



Forcing variables 
applied to ROMS:

Tair, Uwind, Vwind, 
sward, lwrad, Pair, 
Qair, runoff

Regional 
Forcing 
PCs

Regional 
Forcing 
EOFs

New Regional 
response:

T, S, SSH

New 
Regional
Ocean 
PCs

Regional
Ocean 
EOFs

We then project new forcing sets onto the regional forcing EOFs 
and use the ML model to emulate the regional response to that 

new forcing 

New forcing 
timeseries:

Tair, Uwind, Vwind, 
sward, lwrad, Pair, 
Qair

New 
Regional 
Forcing 
PCs

Trained
ML 

model

Regional 
Forcing 
EOFs

In Machine Learning terms: we are using Principal Component 
Analysis as the Encoder/Decoder bracketing the LSTM



Method details and timing

• Train using 1993-2009 series; Test using 2010-2018

• Timing statistics

– Run dynamical model 1993-2018 (~200 cpu-days)

– train with a hindcast of 1993-2009 (~240 cpu-sec)

– test with a hindcast of 2010-2018 (~1 cpu-sec)



Temperature (deg C) results for the BERING SEA SHELF
Left panel: leading mode 3D EOF of temperature (values at the sea floor)

Right panel: monthly anomalies of bottom temperature  at mid-shelf mooring “M2” 
 (Blue = MOM6-NEP; Red = Emulator, summed over all EOF modes)

Training Testing 



Monthly anomaly temperature profile at M2

MOM6-NEP

Emulator

Training Testing 



New results using “direct” method w/o EOFs
better at vertical gradients but skill is more “local”

Monthly T anomaly profiles at M4 (validation period only)

Bottom T Correlation
 MOM6-NEP vs. Emulator 

(red => r = 1.0)

70m isobath

MOM6-NEP

Emulator



Emulators can be used for sensitivity analysis (ROMS example):
base emulator (orange), no Tair (green), no winds (red)
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Feed a big CMIP6 ensemble of monthly air temperatures into 
the trained model and compare SBT under ssp126 vs ssp585

ssp126 ssp585

Histograms of change near Shelikof Strait July 2015->2100
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Conclusions and next steps

• Machine Learning methods show promise as fast downscaling model 
emulators

• After training, the broad-scale regional ocean response can be largely 
emulated using only atmospheric forcing

• Some spatial details of the regional ocean were lost using EOFs, but some 
broad spatial patterns were hard to capture without them!

• Next steps:

– Explore training of the ML model using raw atmospheric fields (w/o EOF 
reduction) but retain EOFs for dimensional reduction of the oceanic 
response and utilize more modes (to get more of the total variance). 
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