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Highlight

o Rainfall delivers the nutrients, but zooplankton determine the
ecosystem’s final response



Research Relevance
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Marginal Filter Effect
(after A. P. Lisitsyn)

Natural filters for catchment areas by
trapping pollutants and nutrients from
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Lisitsyn, A. P. (1995). The marginal filter of the ocean



Research Relevance

Coastal Eutrophication Transboundary Nutrient Seasonal Dynamics
Study the process of UL Analyze the interplay
eutrophication in coastal Assess the role of between physico-chemical
ecosystems, particularly in transboundary nutrient parameters and biological
semi-enclosed waters. transfer (Razdolnaya/Suifen responses on a seasonal
River, originating in China) on scale (May—-0October).
bay trophicity.

World Hypoxic and Eutrophic Coastal Areas

Ot Lompbind o varsous soures by K. Oue. W Sutms st 2 Sugs




Research Area and Objectives

China

Y Area of the Amur Bay 1136 km?. 7 Eonas
4 - Receives inflow from Razdolnaya
1 (Suifen) River, one of the largest rivers
in the Japan/East Sea region

Razdolnaya (Suifen) River

Bl °Transboundary river

g2 °Total basin area: 16,830 km?2
*Russian territory portion: 7,300 km?
(43% of total basin)
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Amur Bay provides spawning and feeding habitats for 3 1 i - ‘f‘
valuable fisheries resources \{J-«" . 5 Japan|East Sea
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Do Investigating the impact of transboundary river runoff on the trophic status and
plankton communities of a semi-enclosed Amur bay in the Japan/East Sea




Research Area and Objectives
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O The bay is divided into two zones: an inner part heavily influenced by river runoff,
and an outer part influenced by the open sea.



Methodology and Data Scope

Data Collection Period
from May to October 2024 across the two
distinct parts of the bay

Physico-Chemical Parameters

Rinko ASTD (Temperature, Salinity, Chl a)

Lab analysis (Dissolved Oxygen, BODS5, DIP, DIN,
DSi, DFe)

Trophic Status & Plankton

Eutrophication Index (TRIX)
Analyzed phytoplankton and zooplankton
community structure.

@
12

B ; (log10[Chla x |d02%| x DIN x DIP] + 1.5)
g =
= i TRIX 12

—_— A — S .
131.5°€  131.6°E  131.7°E  131.8°E 1319 (Vollenveider et al, 1998)

42.9°N

O The bay is divided into two zones: an inner part heavily influenced by river runoff,
and an outer part influenced by the open sea.



Seasonal Dynamics of the Abiotic
Environment

Temperature and Salinity
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Clear gradients observed between the inner
and outer parts of the bay. The inner part is
significantly freshened by river runoff,
especially early and later summer.
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Seasonal Dynamics of the Abiotic Clear gradients observed between the inner

Environment and outer parts of the bay. The inner part is
significantly freshened by river runoff,
Temperature and Salinity especially early and later summer.
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Seasonal Dynamics of the Abiotic
Environment

Oxygen and DIP Regime
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Oxygen saturation dynamics are closely
linked to temperature and biological
processes (photosynthesis and respiration).
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Seasonal Dynamics of the Abiotic
Environment

Oxygen and DIP Regime
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Oxygen saturation dynamics are closely
linked to temperature and biological
processes (photosynthesis and respiration).
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Seasonal Dynamics of the
Environment

TRIX and Chl a

TRIX

July

Chla_ugl @ depth [mj=first

Chl a

The eutrophication index showed a
significant seasonal increase,

highlighting the dominant driver of trophic
state.
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*Rinaldi and Giovanardi, 2011

Seasonal Dynamics of the

Environment
Conditions TRIX units Trophic state*
Oligotrophic <4 Elevated
Mezotrophic 4-5 Good
Mezotrophic 5-6 Mediocre
Eutrophic >6 Bad

E-TRIX

R
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= Open

Chlorophyll-a (ug/L)

The peak trophic state occurs in
September, not during maximum warming
(July-August), indicating that nutrients input
from river runoff is the leading factor.
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Plankton Response
Productivity Peaks

Phyto- and Zoo-

May June

Phyto_Biomass
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The phytoplankton community exhibits two
distinct peaks: a spring bloom and an
autumn bloom — a pattern characteristic of
subarctic regions.
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Plankton Response: The autumn TRIX peak emerges from a
trophic mismatch: reduced zooplankton

Productivity Peaks grazing fails to control phytoplankton

Phyto- and Zoo- biomass, raising the trophic index.
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Plankton Response:
Productivity Peaks
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The autumn TRIX peak emerges from a
trophic mismatch. Reduced zooplankton
grazing fails to control phytoplankton
biomass, raising the trophic index.
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Zooplankton Community
Restructuring

Early Summer

Dominated by predatory

chaetognaths 100 -
(e.q., Parasaglttq elegans, g0
Podon sp.) and fish larvae.
1 2 40 A
20

Late Summer/Autumn

Shift to crustaceans (Cladocerans
like Evadne sp., Oithona sp.,
copepods) responding to increased
food resources.

60 -

|

Zooplankton communities show a
sequential shift in dominant trophic groups
in response to changing productivity and

food availability.
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Seasonality of toxic phytoplankton

Phytoplankton Biomass (mg/m?)
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Driving Forces: The Role of River Runoff

The bay shows a strong

Phyte Biomass (mg/m?) vs Salinity (PSU)
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Driving Forces: The Role of River Runoff
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Driving Forces: The Role of River Runoff
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Data spanning 45 years show a statistically significant increase in
the august precipitation (and annual) in the river basin.

The decadal trend for the
average annual TRIX index is
weak, the bay remains under
constant pressure from nutrient
input, but autumn-winter
cooling help the ecosystem
recover.

TRIX — yearly station-level means by zone




Conclusions and Future Monitoring

1 Complex Dynamics

Rainfall delivers the nutrients through
transboundary river, but zooplankton
determine the ecosystem’s final
response

3 Future Risk

Observed increases in precipitation
create preconditions for potential future
intensification of eutrophication.

2 River-Driven Eutrophication

The September TRIX peak confirms the
limiting role of nutrient input from the
Razdolnaya/Suyfen River basin.

4 Management Strategy

Zonal management is crucial for
predicting critical events like hypoxia and
harmful algal blooms.
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