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Essential Ocean Variables
are a minimum set of key
variables of physics,
biogeochemistry, biology and
ecosystem that are critical to
understanding ocean change and
guiding policy.

https://goosocean.org/whatwedo/
framework/essential-ocean-
variables/

Commission

Physics

Biochemistry Biology and Ecosystems

Sea state

Ocean surface stress
Seaice

Sea surface height

Sea surface temperature
Subsurface temperature
Surface currents
Subsurface currents

Sea surface salinity
Subsurface salinity
Ocean surface heat flux
Ocean bottom pressure
Turbulent diapycnal fluxes

(*pilot)

Phytoplankton biomass and diversity
Zooplankton biomass and diversity

Oxygen Fish abundance and distribution

Nutrients Sea turtles abundance and distribution

Inorganic carbon | Seabirds abundance and distribution

Transient tracers Marine mammal abundance and distribution

Particulate matter Coral cover and composition

Nitrous oxide Seagrass cover and composition

Stable carbon isotopes Macroalgal canopy cover and composition

Dissolved organic Mangrove cover and composition

carbon Microbe biomass and diversity (*pilot)
Benthic invertebrate abundance and distribution
(*pilot)

Cross-disciplinary (including human impact)

Ocean colour
Marine debris (*pilot)

Ocean sound




Essential Ocean Variable (EOV): Inorganic Carbon

Table 1: EOV Information

Name of EOV Inorganic Carbon

Sub-Variables Dissolved Inorganic Carbon (DIC), Total Alkalinity (TA), Partial pressure of

carbon dioxide (pCO,) and pH.
[At least two of the four Sub-Variables are needed.]

Derived Products Saturation state (aragonite, calcite), Dissolved carbonate ion concentration,
Air-sea flux of CO,, Anthropogenic carbon, Change in total carbon

Supporting Variables Surface and subsurface Temperature, Surface and subsurface Salinity, Ocean
vector stress (wind speed), Atmospheric column-averaged dry-air mole
fraction of CO2 (xCO,), Barometric pressure, Oxygen, Calcium concentration,
Transient tracers, Oxygen to argon ratio (O2/Ar)

Responsible GOOS Panel |GOOS Biogeochemistry Panel
Contact: ioccp@ioccp.org




Best Practices

Ocean Best Practices have been an
essential component across all areas of the
observing system. Best practices have to
be comprehensive, findable and used.

Gmde to Best PracUces forj-'
Ocean: €0, Measurements

PICES SPECIAL PUBLICATION 3 .

Dickson, A.G., Sabine, C.L. and Christian, J.R. [Eds.] 2007 I0CCP REPORT No. 8

Guide to Best Practices for Ocean CO, Measurements

https://www.nodc.noaa.gov/ocads/oceans/Handbook_2007.html
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Chapter 4

Recommended standard operating procedures (SOPs)

SOP 2 Determination of total dissolved inorganic carbon in sea water
SOP 3aDetermination of total alkalinity in sea water using a closed-cell titration
SOP 3bDetermination of total alkalinity in sea water using an open-cell titration

SOP 4 Determination of p(CO,) in air that is in equilibrium with a discrete sample of
sea water

SOP 5 Determination of p(CO,) in air that is in equilibrium with a continuous stream
of sea water

SOP 6a Determination of the pH of sea water using a glass/reference electrode cell
SOP 6bDetermination of the pH of sea water using the indicator dye m-cresol purple



Determination of total dissolved inorganic carbon in sea water by coulometry

Step 1 : Stripping of DIC as gaseous CO, i

Phosphor g |
acid 4 Pipette
~ PR

Flow meter E%l

Electric dehumidifier

Ascarite
- -=— from Standard
Stripping chamB&n? ¢ gas injector
Regulator (SQ { ' Magnesium perchlorate
i Silica gel
———to Standard gas injector ¥ i
drain
. to Coulometer
Ishii et al. 1998

(Johnson et al., 1985)

nto N, gas stream

1. A portion of sample seawater is taken
into a pre-calibrated pipette (~¥15 cm3).

2. It is acidified with phosphoric acid in
a stripping chamber.

3. The CO, evolved in the acidified

seawater sample is then quantitatively
removed by a stream of N, gas.



Determination of total dissolved inorganic carbon in sea water by coulometry

Step 2 : Convert CO, to a strong acid hydroxycarbamic acid and titrate it by coulometer

Cap —%=
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In cathode solution, CO, in N, stream reacts
with 2-amino ethanol to form hydroxycarbamic
acid. It acidifies cathode solution and the color
of indicator dye (thymol blue) in the solution
turns from blue to

Detecting the change in the color by photometry,
current flows between the cathode and anode,
and hydroxide (OH") evolves on Pt electrode
together with H,. It titrates hydroxycarbamic
acid until the color of cathode solution returns
to the initial blue color.

The current that flowed is precisely measured
and converted to the titrated amount of
hydroxycarbamic acid that is equivalent to the
amount of CO, supplied by the N, stream.



Determination of total alkalinity in sea water using an open-cell titration

(Dickson et al., 1981)
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Fig.1 Open-cell alkalinity measurement set-up.




Determination of total alkalinity in sea water by spectrophotometry

Beam splitter

Light source

Reference
cell

Pipette

Thermostat bath

(Breland and Byrne, 1993)

Total alkalinity can also be determined by
adding an accurately measured amount of

e — hydrochloric acid to an accurately
measured seawater sample and measuring
_ the pH accurately by spectrophotometry.

file:///C:/Users/Masao0%20Ishii/Downl

__________________

Peristaltic pump

0ads/2025-11-04-1829.pdf

i

Spectrophotometer

Syringe Reagent
Waste (HCI + dye)

Figure 1. Schematic diagram of an apparatus for
spectrophotometric total alkalinity determination in sea water.



GLODAPv2.2023 gledap

A data product of internally consistent ocean biogeochemical observations.
It provides access to quality controlled surface to bottom ocean biogeochemical data, with an
emphasis on seawater inorganic carbon.
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A total of 1108 cruisesin v2.2023

e Includes more than 1.4 million water samples

e The data for the 13 core variables (salinity, oxygen,
Figure 1. Station locations of all stations in GLODAPv2.2023. nitrate, silicate, phosphate, DIC, TA, pH, CFC-11, CFC-12,
CFC-113,CCl4 and SF6) have undergone extensive
guality control, especially systematic evaluation of bias.

Data are available at
https://www.nodc.noaa.gov/ocads/oceans/GLODAPv2 2023
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Accumulation of anthropogenic carbon in the ocean interior

— Rate of change in anthropogenic CO, inventory (1994 — 2017) —

Pacific (44°5-62°N): 0.91+0.18 PgCyr!
Global: 2.6 *0.3 PgCyr?

I .
0 2 4 6 8 10 12 14 16 (Gruber et al., 2019; Canadell et al., 2021)

gCm=2yr1
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Underway determination of partial pressure of CO, in sea water in surface layer

An aliquot of air is equilibrated with a large

l " Seawater intake excess of seawater in the “equilibrator”
ﬁﬁng;%,, and its CO, mixing ratio (concentration) is
Air sample Dryer #*7% nal F & . T . . )
o4 £ ke ($518) ?—@ m;ﬁ} EETDaIsRL;red usmlg non-dispersive infra-red
=k as analyzer.
= O} (orE- o & vz

S;;T_%a;}gises 1 f ——— ‘ The CO, mixing ratio (xq,,) measured is

 Seawater | ¥ /@ KEH converted to partial pressure of CO, by

stk S 3 e SCEL) taking total atmospheric pressure (P) and
. anaT S Air circulation :

el water vapor pressure (py,o) into account:
pCO, = X0y * (P = Pr2o)
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https://www.data.jma.go.jp/kaiyou/shindan/index.html 17
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P
SOCAT v2025 soo4t

- SURFACE OCEAN CO, ATLAS -

Data sets of quality-controlled, in situ surface ocean p(CO), measurements with an estimated
uncertainty of better than 5 patm collected between 1957 and 2024.
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Figure 2. Number of monthly, 1° x 1° grid cells
with pCO, by year.

Figure 1. Number of individual months with 1° x 1° gridded
fCO2 from 1970 to 2024.

¢ |Includes 41.4 million measurements in v.2025.

Data are available at www.socat.info
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Net CO, fluxes in the Pacific (44°S - 62°N; 1985 - 2018)

Eight pCO, observation-based
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v" Topical Pacific : Strong CO, source.

v Western N. Pacific mid-latitude : Strong CO, sink.

Pacific 44°S—62°N:

Global:

-0.41 +0.12 PgC yrt
-1.7 +0.2 PgCyrt

Ishii et al., 2025
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Comparative trends in observation- and model-based estimates for the ocean CO, uptake

0 - Global Ocean Biogeochemical Models ] _ .
1 (GOBMs) Figure 5.8 (a) | Multi-decadal trends in

the annual ocean sink of CO,.

Observationally based products have
been corrected for pre-industrial sea-to-

Ocean sink fluxes for
anthropogenic CO, (PgC yr)

=27 air fluxes (0.62 PgC yr1) based on the
1 Socean= Fant + Frat™ average of estimates from Jacobson et al.
3.
Observationally based gap-filling products (2007) and Resplandy et al. (2018).
i (pCO, products)
4 (Canadell et al., 2021: IPCC AR6 WG1, Ch.5)

1960 1970 1980 1990 2000 2010

v As anthropogenic CO, emissions increase, CO, uptake by the ocean also increases,
but the ratio has not changed significantly.

v After 2000, the pCO, data products show larger changes in anthropogenic CO, uptake.
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Trends of CO, increase in surface layers at 137°E repeat line

(a) 10°N (b) 20°N (c) 30°N
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