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Marine heatwaves

“A discrete prolonged anomalously warm water event in
a particular location” (Hobday et al., 2016)

Threshold:
90" percentile of day-of year
temperature calculated over ~30 years.
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‘ MHWs are more common and critical

= Globally:
MHWs have become more common and more intense and projected to accelerate
in the future

= Impact on the ocean ecosystems mortality of benthic communities, corals,
seagrass, fish and invertebrate poleward shift of warm
water seaweeds and fish and habitat loss

However, the vast vajority of studies used satellite Sea Surface Temperature (SST)
to identify MHWs.
But not all MHWs are restricted to the surface layers ( ), or have a surface
signature



And most of the ecosystem is in the sub-surface

Malan et a¥., Lifting the Lid
on MHWSs, P&O 2025



The challenges with MHWs...

-  We need a baseline to define the (90t percentile) threshold
- temporal coverage is critical (e.g. 30 years)!

- Events of a few days can already have large impacts
—> temporal resolution is also critical (e.g. daily)!

limited studies in the sub-surface.

\%ﬂ Hence the wide use of satellite SST and




Each observation platform has specific characteristics
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Observational Insight Into the
Subsurface Anomalies of Marine
Heatwaves

1 Youstine Elranaby ™ and Ananaine Schaeffey

& 1. Long-term shelf mooring: identify Marine heatwaves below the surface,
f 1 their classes and drivers.
L - What do we miss when looking at SST?

2. What other classes of MHWs exist when considering the open-ocean?

Legia ! 3. Whatif the daily multi-decadal sub-surface data does not exist?
¢ . E.g. Building a sub-surface baseline using multi platforms.

* E.g. Focusing on the vertical structure of surface MHWs (Argo, glider).

\’i 4. Co-designing an observational system for MHWSs - a GOOS initiative.
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Seasonal stratification and complex local dynamics
control the sub-surface structure of marine
heatwaves in Eastern Australian coastal waters

Amandine Schastler® 25 Ay San Guntam 23 & Moniava Rosehan

1. Long-term shelf mooring: identify Marine heatwaves below the surface,
their classes and drivers.
- What do we miss when looking at SST?




Methods

= Datasets: temperature, drivers

= Areas of interest
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ORS065: mooring (Sydney Water Corp)
1992 — 2019 -> 28 years!
Depth 65 m
Temperature dz=4m, dt=1h / 5min
Current velocity after 2006.
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Sea surface temperture
(SST) and other datasets

Temperature anomaly measurements ORS065, SST, with Mixed Layer Depth
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SST ESA L4 (Merchant et al., 2019) ﬂ
0.05° resolution
Gap free (infra-red + microwave)
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BoM meteorological station: air
temperature, wind speed & direction.
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ERAS reanalysis air-sea heat fluxes |
(QLAT, QSENS, QSW, QLW)
0.05° resolution.




Areas of interest

The East Australian Current (EAC) and eddies
-> southward heat transport, geostrophic and

barotropic circulation on the shelf (Schaeffer et : ' -
2013) 110 115 120 125 130 135 140 145 150 155
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Temperature stratification

EmE SST-53m
n mm 20m - 53m
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Wind stress: mostly northward
(downwelling favourable), but sporadic
upwellings in summer (Rossi et al., 2014)
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Seasonal stratification:
weak in “winter”, strong in “summer”.

Difference [ °C]




| Results

= Shallow, extended, sub-surface MHW s
= Characteristics

= Drivers



mll Moderate MHW

‘ MHWs: different classes == Strong MHW
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Contrasting timing, intensity and duration
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‘ Contrasting influence of wind, currents, air-sea heat fluxes

Shallow MHW Extended MHW  Sub-surface MHW

Air temperature

Wind speed

Northward wind stress
Northward geostrophic current
Northward local current

* Normalised anomalies over the week before the peak of the events



‘ Contrasting influence of wind, currents, air-sea heat fluxes

Shallow MHW Extended MHW  Sub-surface MHW

Air temperature

Wind speed

Northward wind stress
Northward geostrophic current
Northward local current

Net flux
Latent flux
Short-wave flux

Long-wave flux
Sensible flux
Northward wind




Wind intensification

Summary of three classes Deep current

Shallow MHW

Enhanced insolation
and/or supressed
evaporative cooling

Shallow
Marine Heatwave

STRONGLY STRATIFIED PERIODS

Shallow
mixed layer

Coastal upwelling

Evaporate heating/cooling

Extended MHW

Extended
Marine Heatwave
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)3 Anomalous warming

—

m_J Anomalous cooling

[ | Mixed layer
Thermocline

Deep ocean

Insolation

Sub-surface MHW
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favourable winds and
increased wind speed
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So when is SST a good proxy for deep MHWSs?

Coherence of MHW days

Inter-annual variability

X

Drivers of inter-annual variability



The importance of seasonal stratification

==0==Strong stratif (218)
Weak stratif (172)

Depth [m]

w
o

40

50

20 40 60
%

Coherence: Percentage of surface (SST) MHW days
which are also a MHW at different depth

80 100

Weak stratification (winter):

- Consistent coherence with depth.

43-57% of MHW days from SST are also
MHWs in the sub-surface.

Strong stratification (summer):
- Coherence drops with depth.

Only 6% of MHW days at 53m co-occurring
witha SST MHW.



At inter-annual time-scale...

Strong stratification: Weak stratification:

MHW day counts (strongly stratified months) MHW day counts (weakly stratified months)
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1995 2000 2005 2010 2015 2020 1995 2000 2005 2010 2015 2020

MHW day count per season:

- Consistent over depth in winter (correlations > 0.8).
- Dephasing in summer (correlation <0.3 at depth>25 m).




At inter-annual time-scale...

Strong stratification:

MHW day counts (strongly stratified months)
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1.Conclusions

During winter weak stratification: coastal MHWs are mostly consistent over depth
-> |ong, extended MHW events.

Good proxy for winter deep MHWSs: SST and geostrophic currents.
o o

Deep Anomalous
current cooling

intensification

Mixed layer

Coastal Thermocline

downwelling Deep ocean

Evaporative Insolation
Marine Heatwave heating/cooling 8

Extended

WEAKLY STRATIFIED PERIODS




1.Conclusions

During summer strong stratification: coastal MHWs are decoupled
-> shallow MHWs

-> & sub-surface MHWs, the shortest and most intense.

Good proxy for summer deep MHWSs: downwelling winds.

Enhanced insolation
and/or supressed
evaporative cooling

Enhanced
evaporative cooling Enhanced downwelling
favourable winds and
increased wind speed intensification

Deep - Anomalous
Shallow cooling

Anomalous
warming

. current
mixed layer
Mixed layer

Thermocline
Deep ocean

Coastal
downwelling

Evaporative Insolation

heating/cooling

Sub-surface

Shallow Marine Heatwave

Marine Heatwave

STRONGLY STRATIFIED PERIODS
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2. What other classes of MHW:s exist when considering the open-ocean?




A typology for MHWs

Combining typologies from previous literature,
qualitative and quantitative analysis

- typology of 6 types of vertical MHW structure.
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P frontiers

Outline .
Daily Subsurface Ocean Temperature
Climatology Using Multiple Data
Sources: New Methodology
1.
2.

3. What if the daily multi-decadal sub-surface data does not exist?
* E.g. Building a sub-surface baseline using multi platforms.
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Building a climatology

1. Gather Data
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2. Quality Control

3. Aggregate
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- Aggregated

] Data Product

4. Gap-fill

....... 2 \T/:rf:;'r'z"y | Gridded Data
o - Gridding v Product

5. Generate Statistics

= Optimal Depths A . .
= Data Ratio | Climatologies
= Smoothing

Temperature [ C]
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© o
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17

Mixed sampling
Mooring daily sampling
Mooring bottle sampling
Mooring daily sampling, ratio = 6:1
Mooring daily sampling, ratio = 6:1, +-2day
Reference Statistics

L

17 and 21 m

Challenge: account for differing data source sampling
frequencies. Use synthetic temperature data with similar qualities
to real observations.

- Data source year ratio to under-sample mooring days (here, a
bottle to mooring ratio of 6:1).
- Time-centered moving window +- 2 days.



Building a climatology
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between 17 and 21 m

Challenge: account for differing data source sampling
frequencies. Use synthetic temperature data with similar qualities

to real observations.

- Data source year ratio to under-sample mooring days (here, a

bottle to mooring ratio of 6:1).

- Time-centered moving window +- 2 days.
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Observational Insight Into the
Subsurface Anomalies of Marine
Heatwaves

Youstine Elzataby ' and Anandine Schaeffer

* E.g. Focusing on the vertical structure of surface MHWs (Argo, glider).
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Example: vertical profiles
during surface MHWs:

@

Observational Insight Into the
Subsurface Anomalies of Marine
Heatwaves

Youstra E2a%a0y * and Amandine SchuefMer

- Shallow MHWSs [0-150 m] (relationship
between surface temperature anomalies and
depth extent)

Depth (m)

1200

i - Intermediate MHWSs [150—-800 m]
1400 I
sooo] | Deep MHWSs [>800 m, 45%]
1a00 -> greater and deeper maximum

rrarmrranr-dlil e temperature anomalies, dominating MHWSs in
Temperature anomaly (’C) Temperature anomaly('C) Temperature anomaly('C) Wlnter, |n Wa rm Core eddleS.




Example: vertical profiles
during surface MHWs:

Surface MHWSs from SST and glider missions
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Gliding through marine heatwaves: Subsurface biogeochemical
characteristics on the Australian continental shelf (in prep)
D. Mawren, J. Araujo, R. Le Gendre, F.E.K. Ghomsi, J. S. Saranya,
J. A. Benthuysen, A. Schaeffer




Example: vertical profiles
during surface MHWs:

Winter Spring Summer Autumn
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‘ Outline
GP8S | Ocean Observing Co-Design

by The Global Ocean Observing System

§

! 3.
L.ﬂ,l .

\,i 4. Co-designing an observational system for MHWSs - a GOOS initiative.



Marine Heat Waves
Exemplar

Operational
services
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Aims to:

Builds a co-designed framework for MHW
monitoring, modelling, and user-driven services.

Strengthen community and end-user engagement
integrating stakeholder in the process, ensuring
systems are designed with and for the
communities they serve.

Share knowledge and practices across existing
examples from different regions.
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CONCLUSIONS

Extremes are challenging, even more in the sub-surface!
To observe & need long time-series and sustained observations.

To model - very sensitive to model biases. Models are best used to study the dynamics, drivers of
large events, sensitivity, and predictions.

To reproduce (reanalysis products): as good as the constraining observations are - need
observations in the sub-surface.

To forecast!

Let’s not forget why MHW matters for the health of our environment, people and economies.
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