Fisheries, Food Security, Biodiversity & Climate Change

Jake Rice (DFO-Canada) Serge Garcia (FAO-ret.)

Purpose of Talk

- Bring separate lines of science-policy dialogue together
- Many setting where there are pair-wise discussions of:
 - Climate Change & Global Food Security
 - Climate Change & Conservation of Biodiversity
 - Climate Change & Fisheries
 - Fisheries & Global Food Security
 - Fisheries & Conservation of Biodiversity
- What are considered solutions to problems in one setting are considered sources of problems in others
- GOAL IS TO OPEN DISCUSSION OF THE INTERSECTION OF THESE CRUCIAL ISSUES AND THE INTERSECTION IS GOVERNANCE

TYPICAL QUESTIONS FROM ICES/PICES/ETC MEETING

- Climate change : ocean physics & chemistry : fish populations and aquatic ecosystems (Sessions A2 and B1)
- Climate change: fish distribution and productivity: fisheries (B2 and C1)
- 3. Questions similar to 1, but about components of biodiversity
- 4. What factors affect the vulnerability / resilience of biodiversity / ecosystems to impacts of climate change (B1 and B2)
- 5. What biodiversity conservation policies and measures are expected to be robust to climate change? (P3 and C2)

QUESTIONS FROM MEETINGS ON HUMAN FUTURE

- 6. What implications does climate change have for global and regional food security?
- 7. What are future human demographic trends, and what do they imply for future food security

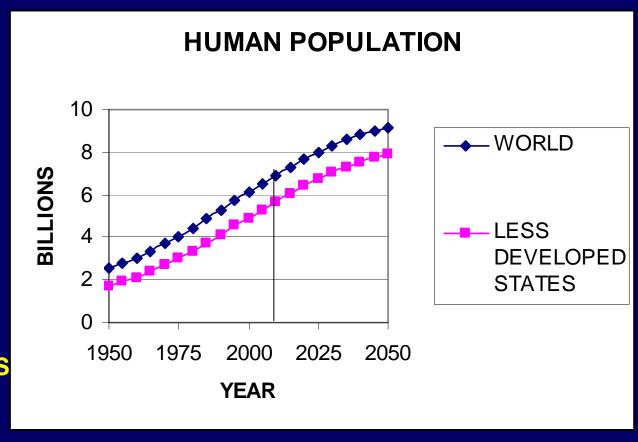
AND THE QUESTION HIDDEN IN ALL OF THEM

8. How can we address these and correct past blatant failures in both fishery management and nature conservation?

Overarching thesis:

For any policies and management measures for <u>food security</u>, <u>conservation of biodiversity</u>, and <u>sustainability of fisheries</u> to succeed, they all have to be coherent across institutions.

What are the challenges to policy coherence across issues?


CLIMATE CHANGE AND FOOD SECURITY

Data from UN - IGO sources – W.H.O., O.E.C.D., F.A.O., World Population Centre, Agro-Biodiversity

What is expected for human population growth?

FROM UN
HUMAN
POPULATION
PROSPECTS

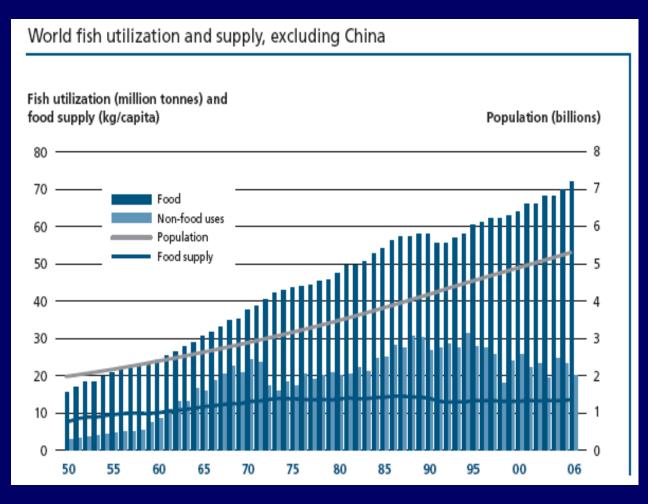
70 % IN
URBAN
AREAS /
MEGA-CITIES

Percent in coastal areas increases from ~50 to ~ 70 %

WHAT DOES THIS MEAN FOR FOOD REQUIREMENTS

W.H.O. human nutritional requirements

- Calories needs largely from grains (and vegetables ?)
- PROTEIN from grains, livestock & FISH
 - Fish provides more than 1.5 billion people with at least 20 % of non-grain protein
 - In poorer island and coastal states fish provides around 50% of the total non-grain protein
 - Also provide essential micro-nutrients & amino acids
- Individual requirements vary with age, gender
 - Assume 60 kg adult (younger = smaller but need more per kg)
- NEED 3.65 x 10⁸ t OF DIETARY PROTEIN BY 2050 for population increase


Forecasts for GRAIN production Status – quo conditions

- Land in cultivation
 - will increase at slower rate than 1990-2005 (~ 13%);
 - more marginal lands into production
- Percent dependent on irrigation
 - Will increase faster than rain-dependent farming
 - With better technology 11% increase in water use
 - "Green Revolution" of genetic improvements, fertilizatio뉮 Will continue, but at 50% of earlier rate
- NET EFFECT CROP PRODUCTION INCREASES SLIGHTLY FASTER THAN HUMAN POPULATION (and larger ecosystem footprint from agriculture)

What does climate change do to terrestrial food production?

- Grains (OECD & FAO, Agro-Biodiversity)
 - Assume "best adapted strains", CO₂ benefits+fertilization, usually Hadley2 scenario for rainfall and temperature regimes
 - #1: WHEAT- reductions everywhere but NA & W.Europe
 - Down 43 to 57% CA & SA; 44 to 97% Africa; 43 to 58% Asia
 - #2: RICE no %age projection; threat is increasing number and intensity of severe storms. FAO-AgroBiv 1 in 4 crops lost.
 - #3: MAIZE increase usually 20-30% in Africa, Asia, Europe
- Livestock (OECD)
 - "moderate" reduction in cattle and swine in temperate latitudes (drought and heat waves)
 - "larger" reductions in tropics heat stress and poorer pasture
 - Poultry ?????

How much food will be fish? Present trends OECD 2009 – from SOFIA

INCREASE SINCE1990 IS AQUACULTURE

CAPTURE FISHERIES PEAKED ~1990

How much fish in the future

2006 -

- Capture fisheries stabilized at 85-95 mmt.
- Aquaculture ~ 40 mmt and increasing
- 33 mmt used for oil and animal feed, rest consumed.
- 2050
 - If fish stays 20% percent of dietary protein, 20% of 365 mmt = 73 mmt tonnes MORE fish
- If it has to replace decreasing grain—MORE
- With most of population growth in parts of world where fish is greater % of protein- EVEN MORE

Where can we get 75 – 100 mmt more fish protein?

- INCREASE CAPTURE FISHERIES?
 - SOFIA concluded 100 mmt was unsustainable when reached in 1990s
 - Could fish lower trophic levels to get greater yield from primary production (10-fold gains)
- INCREASE AQUACULTURE?
 - More intensive mariculture in coastal areas
 - Community-based integrated pond culture
 - Use of specialize strains and species adapted for pond culture and low-protein diets.

BIODIVERSITY AND CLIMATE CHANGE

Goals from CBD 2010 Resolution Targets, Johannesburg WSSD Develop Goals, IUCN, Pew Ocean Trust

Challenges to Conservation of Marine Biodiversity now priority issue

All the world's oceans under some stress; often multiple stresses (Halpern et al 2007)

Special Attention to Seamounts, corals etc (FAO DSF etc)

Major declines in all large fish, invertebrates, elasmobranches etc (Myers and co-authors)

 "Doom" forecasts for fisheries replaced by about a third of stocks improving under more cautious management.

Many Policy Settings for dialogue and action

- UN Biodiversity Beyond National Jurisdiction
- CBD Ocean and Coastal resolution Doubled in length 2008-10
- IUCN ONE THIRD of 2008 Resolutions on marine issues

Gaps from International policy to Domestic policy to implementation are all growing

Climate Change and Biodiversity Conservation

- Many papers in this Symposium document details
- Major Messages from science community:
 - 1. Some species ranges will change in response to changes in oceanographic conditions
 - 2. Productivities will change as transport mechanisms and larval development conditions change
 - 3. Community structure will change from 1 & 2
 - 4. Ocean acidification may reduce abundance and productivity of species with shells & exo-skeletons
 - 5. Specialized habitats like corals and estuaries face multiple stresses
 - 6. Coastal habitats face more severe storm stress, but service of coastal protection will be more important

"Conventional wisdom" for Fisheries Mgmt measures

TO PROTECT ECOSYSTEM PROCESSES MUST REDUCE STRESS FROM FISHERIES TO INCREASE RESILIENCE TO CLIMATE CHANGE, **MUST REDUCE STRESS FROM FISHERIES** TO PROTECT ESP. VULNERABLE ECOSYSTEMS AND HABITATS REDUCE FISHING EVEN MORE IN REEFS, MANGROVES, SEAMOUNTS, ETC TO HELP COASTAL HABITATS REDUCE LAND-**BASED PRESSURES AS WELL AS FISHERIES** REDUCE USE OF ALIEN STRAINS AND SPECIES IN **AQUACULTURE**

(IGNORES POSSIBILITY OF COEVOLUTION)

POLICIES AND MEASURES TO ACHIEVE THESE OUTCOMES

- WSSD Mill. Development Goals and CBD 2020 targets
 - 15% of all marine areas in effectively managed, lowhuman-impact MPAs
 - Cease destruction of special coastal habitats (mangroves) by 2015, and restore coastal habitat diversity
 - Cease overfishing (all F < Fmsy)
 - All aquaculture has sustainable ecosystem impacts
- Rebuild all SSB above Bmsy by 2015
- Reduce harvest of lower trophic levels (2010 Pew)

NOT ENDORSING THESE TARGETS – USING THEM AS CONTEXT FOR THE COHERENCE DISCUSSION

The contradiction

ALL THE MEASURES NEEDED FOR CONSERVATION OF BIODIVERSITY REDUCE CONTRIBUTION OF FISHERIES TO FOOD SECURITY NEEDS, AND VICE VERSA

WHAT PART(S) OF SOCIETY CHOOSES?

Which must compromise – "nature" or "the poor"

The belief in a win-win outcome does not match data

Good fisheries management will allow long-term stock rebuilding and some increase in yield, but AT BEST recovery to levels that could not be sustained in 1990s

Some biodiversity benefits don't "cost" – some DO

Illustration

Activity Food Security Biodiversity

- Harvest rate Maxi Sustainable Reduce
- Lower trophic level
 Fish More
 Fish Less
- High productivity Areas Fish More Extra Protection
- Mariculture Change species & increase Reduce
- Freshwater culture Increase Only local species
- Freshwater use of strains
 - bred for aquaculture Increase Reduce

Messages

- We do not have the "right" society choices
- We are concerned:
 - Science policy dialogues about climate change and food security and climate change and biodiversity are proceeding in parallel
 - Likely outcomes of dialogues are NOT COHERENT
 - Tension of "Fascist" vs "Socialist" environmentalism
- Without a merger of these policy discussions, likely outcome is **failure on both pathways**
- OLD problems of fisheries governance climate change gives new urgency