Effects of ocean acidification, warming and melting of sea ice on <u>Ω</u> of Canada Basin surface water

Michiyo Yamamoto-Kawai (Tokyo Univ. Mar. Sci. & Tech., Japan) Fiona McLaughlin (IOS, Canada) Eddy Carmack (IOS, Canada)

What's Ω ? Why do we care?

Ω = CaCO₃ saturation state of seawater

 Ω < 1 (undersaturated)--- CaCO₃ shells/skeltons are at risk of dissolution Decease in Ω --- difficult to maintain CaCO₃ shells

> Anthropogenic CO_2 —ocean acidification —decrease in Ω

$\begin{array}{l} \text{Anthropogenic CO}_2\\ -\text{ocean acidification}\\ -\text{decrease in }\Omega \end{array}$

[Steinacher et al., Biogeosciences, 2009]

- Daragnoite is lower than Dcalcite (aragonite is more soluble)
- surface Ω is low in high-latitude oceans

[90s data: CARINA+GLODAP]

Pan-North American view of Ω in 2007/2008

Factors controlling Ω

 $\boldsymbol{\Omega}$ in the Canada Basin surface water

How climate change affect Ω ?

Compare 2008 and 1997

Quantify causes of recent change in $\boldsymbol{\Omega}$

2007-2008 (C3O & JOIS)

[Yamamoto-Kawai et al., in prep]

Why $\Omega < 1$ in these layers?

Ω is function of DIC, TA, S, T and Pr

 Ω decreases with

1. increasing pressure

How much?

- 2. cooling
- 3. increasing CO₂ (anthropogenic CO₂)
- 4. increasing CO₂ (respiration/remineralization)
- 5. freshwater input

Cooling

Ω is calculated from DIC, TA, S, T and Pr

increasing CO₂ (anthroCO₂) Ω is calculated from DIC, TA, S, T and Pr from pCFC12 [Sabine et al., GBC., 2002]

[Sabine et al., GBC., 2002]

respiration/remineralization

In the Canada Basin

3 aragonite undersaturated layers

Bottom: pressure

Subsurface: remineralization, freshwater input, anthro CO₂, cooling

Surface: freshwater input, anthro CO₂, cooling

[Steele et al., 2007]

Melting of sea ice---dilution of surface seawater

Sept. sea ice extent

Sea surface salinity

[Yamamoto-Kawai et al., 2009a]

Melting of sea ice---enhancement of air-sea gas exchange

Sept. sea ice extent

[Cai et al., Science, 2010]

Ω in the C.B. surface water

[Yamamoto-Kawai et al., 2009b]

Factors controlling Ω of surface water in C. B.

Melting of sea ice Enhanced air-sea gas exchange Surface freshening Increased atmospheric CO_2 (global ocean acidification) Warming

Quantify!

Ω is estimated from S, T, TA, DIC and Pr

fCO₂ in preindustrial period =280 uatm (without anthroCO2)

T^{PI} = -1.5C (without warming)

S, TA and Δc_{diseq} in preindustrial period

$$\Delta$$
Cdiseq^{PI} = -41 µmol/kg (without change in gas exchange)

SIM = 0

 $S^{PI} = S_{obs} - \Delta SIM \cdot S_{SIM}$ (without freshening)

 $TA^{PI} = TA_{obs} - \Delta SIM \cdot TA_{SIM}$ (with

Ω -aragonite

1.4 ~ 1.6

~ 1.3

≤1

~1.5 in 1820 [Steinacher et al., 2009]

[Yamamoto-Kawai et al., 2011]

$\Delta\Omega$ -aragonite

from PI to 2008 (lower)

from PI to 1997 (upper)

[Yamamoto-Kawai et al., 2011]

0.4

0.2

0

-0.2

-0.4

0.4

0.2

0

-0.2

-0.4

Canada Basin surface water

Mean changes in Ω aragonite in the Canada Basin surface water from preindustrial ice-covered conditions. Total change (observed – preindustrial) and changes caused by atmospheric CO2 increase, warming, air-sea

[Yamamoto-Kawai et al., 2011]

Ω in the future CB surface water ??

In the Canada Basin

There are 3 aragonite undersaturated layers

Bottom: pressure

Subsurface: remineralization, river runoff , anthro CO₂, cooling

Surface: river runoff, anthro CO₂, cooling in 1997

In 2008, + enhanced air-sea gas exchange + input of sea ice meltwater - warming

On the Shelf

Retreat of sea ice enhances upwelling of <u>subsurface water</u> onto the shelf [Carmack and Chapman, GRL, 2003]

Aragonite undersaturated

ightarrow Negative impacts on Benthos

Ω aragnoite

[90s data: CARINA+GLODAP]

Low omega water along the pathway of Arctic water [Azetsu-Scott et al., JGR, 2010]

Melting of sea ice [our study]

Undersaturated bottom & surface waters [Mathis et al., JGR, 2011]

Upwelling of acidified water [Feely et al, Science, 2008]

Thank you !

