The Impact of Changing Sea Ice and Hydrographic Conditions on Biological Communities in the Northern Bering and Chukchi Seas

Jacqueline M. Grebmeier^{1,} Lee W. Cooper¹, and Karen E. Frey²

¹University of Maryland Center for Environmental Science Chesapeake Biological Laboratory, Solomons, Maryland USA ²Graduate School of Geography, Clark University, Massachusetts USA

Ecosystem Studies of Sub-Arctic Seas (ESSAS) Open Science Meeting (OSM)

May 24, 2011, 1100

Marriott Hotel
Seattle, Washington, USA

INTRODUCTION

- Arctic Pacific sector is experiencing changes in seasonal sea ice extent and retreat and increased ocean temperatures and freshwater content
- Emerging observations indicate these changes are driving shifts in marine species composition and carbon cycling that may signal ecosystem reorganization
- Biological observations include changing composition and range extensions of benthic fauna as prey coincident with more northern migration of marine mammals into Pacific Arctic

Sea ice extent (2009) and surface sea water temperatures (2007-2009) in Pacific region

2010 3rd lowest sea ice extent on record

Seasonal water mass structure in the Pacific sector

C3O Seawater Temperature "Slice" in July 2008

[Tom Weingartner and Seth Danielson]

[Eddy Carmack/IOS]

Earlier spring sea ice retreat, later fall ice formation

South to north pelagic to benthic ecosystem transition in the Bering Sea

[Graphic courtesy of Brad Moran and Mike Lomas-BEST program]

Arctic, Subarctic and Bering Sea: dominant copepods

All sketches drawn at same magnification; all scale bars represent 1mm Arctic Ocean **Arctic Copepods** Canada Calanus hyperboreus Basin C. glacialis Metridia longa **Beaufort Sea** Chukchi Shelf Copepods Pseudocalanus sp. Russia Oithona sp. Alaska Bering Sea Copepods **Bering Sea** Basin Neocalanus cristatus

N. flemingeri

Calanus marshallae

[courtesy Sharon Smith]

Decadal sediment community oxygen consumption indicate spatial patterns of organic carbon deposition to the sediments

Decadal distribution of Total Organic Carbon content as indicator current speed and deposition zones

higher TOC
 associated with silt &
 clay content,
 indicative of sediment
 deposition zones,
 slower currents

1990-1999

180°

170°W

160°W

150°W

170°E

Rich benthic communities on the western side of the Bering/Chukchi Sea system

Dominant infaunal taxa includes bivalves, amphipods, polychaetes and sipunculids

Distributed Biological Observatory (DBO) Sites

- Regional "hotspot" locations along a latitudinal gradient will comprise the DBO sites
- DBO sites are considered to exhibit high productivity, biodiversity, and overall rates of change
- DBO sites will serve
 as a change detection
 array for the
 identification and
 consistent
 monitoring of
 biophysical
 responses

Shifts in sea ice persistence and Chl-a concentration from 2003-2009

Threatened spectacled eiders keyed to sea ice and specific bivalves (DBO1)

- feed on 3 species of bivalves
- shallow shelf system, high cascade potential lower to higher trophic levels

 ocean acidification potential dissolve bivalve shells

• extent & duration cold pool (<0°C) critical to benthic infauna by exclusion of benthic fish and epibenthic predators

Decline in sediment community oxygen consumption indicative of reduced carbon supply to the benthos SW St. Lawrence Island

[update from Grebmeier et al. Science 2006]

Chukchi Sea