Changes in phytoplankton and zooplankton production in the Nordic and the Arctic Seas under a warmer climatic regime.

Dag Slagstad, Ingrid Ellingsen and Morten Alver SINTEF Fisheries and Aquaculture, Trondheim, Norway

2nd ESSAS Open Science Meeting. 22 May 22-26, 2010. Seattle

Outline

- A short model description and a few results
- Model experiments using different atmospheric forcings:
 - IPCC A1B (and A2)
 - Modified reanalysed data

The SINMOD Basic Model Components

The SINMOD hydrodynamic model

Model characteristics

- z-level model
- Mode splitting
- EVP ice model (Hibler 1979, Hunke 1997)

Initialisations

- Temperature and Salinity: WOCE data: <u>http://www.nodc.noaa.gov/woce_v3/</u>
- Ice. A course specification and then spin-up for 20 years.

• Forcing

- Atmosphere: ECMWF (ERA40, ERA INTERIM)
- For the Climate runs:
 - ECHAM 5 Max Plank model.
 - ERA40 and specified increase in air temperature
- Freshwater run-off from rivers surrounding the model domain

Model domain

Latitude

Calanus Population model

Barents Sea. Fraction covered by ice. ERA Interim forcing Observes and Simulated

() SINTEF

Arctic Ocean. Fraction covered by ice. ERA Interim forcing

Observes and Simulated

Annual Mean (2003-2008) Gross Primary Production (GPP). Forcing: ERA Interim

Surface nitrate, Winter

Annual *C. finmarchicus* production. Mean 2003-2008. Forcing: ERA Interim

Annual *C. glacialis* production. Mean 2003-2008 Forcing: ERA Interim

Climatic experiments

- 1. Atmospheric input from Climate models
 - 1. A2 Global, coarse resolution model

2. A1B – Regional, high resolution model

2. Use present reanalysed atmospheric forcing and increase air temperature to melt down the summer ice.

IPCC scenarios and projected global warming

Projections of surface temperatures

A1B. Annual Primary and secondary production Norwegian Sea

A1B. Annual Primary and secondary production Barents Sea

A1B. Annual gross primary production

Annual mean production of *C. finmarchicus*

Annual mean production of C. glacialis

A1B (GCM) vs A2

A1B (GCM) vs A2 Barents Sea

Specified increased air temperature. Depending on Latitude

$$T_{air} = T_{air}^{ECMWF} + f_T(Latitude)$$
Example: $T_{airNP} = 8^{\circ}C$

5

Simulations

- Standard run, ECMWF data (ERA40), i. e. $T_{airNP} = 0$. (1979-2007)
- 4 scenarios using:
 - 1. $T_{airNP} = +2 °C$
 - 2. $T_{airNP} = +4 °C$
 - 3. $T_{airNP} = +6 °C$
 - 4. $T_{airNP} = +8 \ ^{\circ}C$

Simulation period: 1979 - 2007

Arctic Ocean. Fraction covered with ice

Minimum ice cover (Barents Sea: Max ice cover)

Sections

Section along 40 °E. April

Section along 150 °E. April

90

Latitude

s and Aquaculture

Gross Primary production (gC m⁻²)

Differece in GPP (gC m⁻²) CaseV – Case I

Production of C. finmarchicus (g C m⁻²)

SINTEF Fisheries and Aquaculture

10

Change in the distribution of *C. glacialis*

Annual Production (gC m⁻²) *C. glacialis*

Major findings

Warming may cause:

- 1. Primary production will increase 2 or 3 fold in the
- Arctic. But stratification limits nutrient supply from below.
- 2.C. glacialis production will increase in the Arctic Ocean.
- *3.C. glacialis* will disappear from the Northern Barents Sea.
- 4.Total primary production in the Barents Sea increases only slightly and decreases in the Norwegian Sea
- 5.C. finmarcicus production increases in the Greenland

Sandricetand Seas.