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Overview

Considerable recent work on inferring climate impacts from retrospective
variability in environmental conditions combined with modeling. Mechanistic
relationships imbedded into climate change models with exciting and sobering
outcomes

Global patterns and ecological gradients of productivity, species richness, species
distributions, and variability form the patterns of adaptation of biodiversity to
the Earth’s climate & offer important insights into just how complicated it will be
to project warming/GHG induces impacts

Complex co-evolved dynamics that defy simple depiction with single drivers

some example issues:
- distribution changes of fishes in relation to warming scenarios
- ocean acidification impacts on biota
- sea level rise projections

Comparative studies of ecosystem change in relation to variations in ocean
climate offer a powerful way to infer process
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How will the world’s current patterns respond?
Will they have feedbacks on atmospheric and terrestrial
Ecosystems?



Climate Change and Extinction Risks

“Approximately 20 to 30%
of plant and animal species
assessed so far are likely to
be at increased risk of
extinction If increases In
global average temperature
exceed 1.5t0 2.5°C

(medium confidence).”

- IPCC Climate Change 2007:Synthesis
Report



Environmental Gradients &
species relationships —
evolutionary aspects

e where and how productive are ecosystems?

* how variable are seasonal patterns of productivity?

* how mobile are species to exploit productivity patterns
vs. non-preferred conditions? (migration more prominent
closer to the poles?)

e what are the geographic patterns of productivity & richness?
* how will these patterns change and over what time scales?
* how will human societies adapt to these changes?



Phytoplankton class-specific primary production in the world’s
oceans: Seasonal and interannual variability from satellite
observations
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will phenology of
phytoplankton change?

Phytoplankton class-specific primary production in the world’s
oceans: Seasonal and interannual variability from satellite
observations
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Very Few Marine Taxa are Surveyed Synoptically
(in situ and remote sensing)



Latitudinal diversity gradient of eastern Pacific (o) and western Atlantic (¢) marine
prosobranch gastropods, binned per degree of latitude.

Inverse to variation in
productivity

Marine latitudinal diversity gradients: Tests of causal hypotheses Roy et al. 1998

©1998 by National Academy of Sciences



Relationships between mean annual SST and diversity for western Atlantic marine
gastropods.

N.B., Seasonal variability
inversely correlated with
Mean SST

Roy K et al. PNAS 1998;95:3699-3702
©1998 by National Academy of Sciences



How will Patterns of Species Distribution Change
in Relation to Warming?

Complicated by many confounding factors:

- abundance changes (e.g., “basin” hypothesis of McCall)

- fishing effects (cod in the western Atlantic)

- predation effects (do predatory fishes “prefer” their
dominant prey over their optimal temperatures?)

On land, species of plants can substitute altitude for latitude

In the ocean species can in some cases substitute depth for latitude
& potential for demersal species to become more pelagic



Atlantic Cod in the NW Atlantic - 12 management Units
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Life history types more or less sensitive to
warming scenarios
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Considerable variation around the mean for some species and life stages
In environmental preferences (In CPUE by depth)
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Western North Atlantic off USA & Canada
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proportion of total

How do we measure “preferences"? Factor out available space
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Confounded by ecophysiology: Potential Changes In

Sockeye Salmon Distribution

Sockeye Salmon spend ~2-3 y in the NE Pacific and Bering Sea
* Migrate northward in summer, southward in winter

* Food availability greatest in summer, but decreases with warmer
temperature

» Metabolic costs increase exponentially with temperature.

* Net intake drops to <0 (beginning starvation) at warmer temperatures

Starvation

Temperature

145W

Welch et al. 1998



Trends in Sea Level Rise & Potential Resource Impacts
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Much of the most vulnerable
low lying land aroeund the
Chesapeake Bay Is currently
wetland

Even current rate of sea level
rise in the Bay Is often
outpacing the ability of
wetlands to maintain
themselves

Projected rates of sea level
rise would inundate 80-909%
of existing wetlands

Under this scenario, the
region would lose:

More than 167,000 acres of
undeveloped dry land

58% of beaches along ocean coasts

69% of estuarine beaches along the
bay
161,000 acres of brackish marsh

More than half of the region’s
iImportant tidal swamp

Chesapeake Bay:

Essential Fish Habitat

- Wetland impacts of
SLR

Wetland survival in response to three sea level rise
scenarios (Reed et al., 2007)



Barataria Bay
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Lowgei® 2
g
af . £
- ¥ B beiow 1.5 meters N
1.1-' Maps of Lands Vulnerable to Sea Level Rise: . 1.6 - 3.5 meters 4
[ . .
I Modeled E'Ievatlons along the U.S. Atlantic and Gulf Coasts :| shave 3.5 meters
; E‘I James G. Titus
Charlie Richman
130 = dek
T



Ocean Acidification: Scenarios and impacts on biota

Projected Increases in Ocean Acidity

‘/ e Emissions

Value:

Bivalves: $732M ex-vessel commercial value
Crustaceans: $1,265M ex-vessel commercial value
Combined : $1,997M ex-vessel commercial value
(51% of commercial catch by $)

» Potential impacts on shelled plankton, coral reefs (shallow and deep), bivalves and
crustaceans, and food chains

» Managed resources under Coral Reef Conservation Act, MSRA, ESA



Ocean Acidification observations at Hawaii

How do we conduct laboratory studies?
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Frameworks for structured
Comparative Analysis

of Ecosystems

ESSAS could to feed in to

more global comparisons



What should we compare?

Observations? Models?

\ /

Processes

Diversity < > Productivity < > Resilience

l l l

Conservation Harvesting Regulation

Murawski, Steele, Taylor, Fogarty, Sissenwine, Ford, & Suchman. 2010.
Why compare marine ecosystems? ICES Journal of Marine Science



Larval fish
abundance
#/m”"3

Zooplankton density
Mg/m”3

We have considerable
data scattered across
agencies & countries

Ocean Color - Phytoplankton

27



Earth Systems Modeling approach to regional dynamics

Modeling Foci:
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End Notes....

As with most science, much of the “first order” science we have
done has shown just how complicated things are. They point the
way towards a mix of comparative studies, paleoecology and
laboratory analyses — reductionistic approaches will not reveal
complex interactions

Need to understand how species respond not only on a
taxonomic basis but in the presence of other species (competitors
& prey)

We need a mechanism to assemble the global patterns of
environmental information and biological data. IPCC cannot do it.
In AR-4 only 3% of ecological data sets were marine vs. 70% of the
planet..... (point emphasized at Sendai)

Who will step up to organize such a marine atlas?
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