Science, Service, Stewardship

Alternating Climate Conditions Influence Walleye Pollock Early Life Stages in the Southeastern Bering Sea

T.I. Smart^{1,2}, J.T. Duffy-Anderson¹, J.K. Horne²

NOAA FISHERIES SERVICE

¹NOAA Fisheries Service ²University of Washington

Adult Walleye Pollock in the Bering Sea

Kotwicki et al. 2005: Adult biomass and distribution influenced by temperature

Photo Credit: Matt Wilson

Are pollock early life stages influenced by temperature?

Abundance
Growth
Mortality
Temporal Shifts
Spatial Shifts

Pollock Developmental Stages

Yolksac larvae <5 mm

Preflexion larvae <10 mm

Late larvae <25 mm

Juveniles <65 mm

Approach

Classified years as cold or warm by spring SST anomaly (-/+) 21-year time series of ichthyoplankton surveys Selection criteria: Cover known spawning grounds Cover known spawning season

1. Abundance

Non-parametric Jonckheere-Terpstra test, $\alpha = 0.05$

Why higher abundances of eggs in cold years?

2. Growth Rates

Cruises with overlapping spatial coverage each year

2. Growth Rates

Non-parametric Jonckheere-Terpstra test: J = 1.66, p = 0.048

Slower growth rates in cold conditions

3. Mortality Rates

Non-parametric Jonckheere-Terpstra test: J = 1.96, p = 0.025

Higher mortality rates in cold conditions

Ex. Late Larvae

Full Results: Temporal Shifts

	Cold Peak	Warm Peak	Difference
	DOY	DOY	
Egg	110	75	35 days*
Yolksac	140	08	60 days
Preflexion	150	08	70 days
Late larvae	190	140	50 days
Juvenile	230	220	10 days

More evidence for shifts in spawning time Delayed hatching and larval development

5. Spatial Shifts

Longitude (E-W) Temperature (p<0.001)

Latitude (N-S)

No effect of Temperature

Summary

Hypothesis	Test	Support?	Consequence
Abundance	Stage-specific	YES early NO late	
Growth	Growth rates Temporal GAMs	YES YES	Longer pelagic duration Increased vulnerability
Mortality	Mortality rates	YES	Population loss
Temporal Shifts	Temporal GAMs	YES	Prey mis-match
Spatial Shifts	North-South East-West	NO YES	Nursery area suitability

Acknowledgements

North Pacific Research Board - BSIERP Officers and crews NOAA and UNOLS research vessels Lorenzo Ciannelli (OSU) Kathy Mier (NOAA)

