Development of a climate-tofish-to-fishers model: data structures and domain decomposition

Kate Hedstrom, Jerome Fiechter, Kenny Rose, Enrique Curchitser, Miguel Bernal, Shin-ichi Ito, Salvador Lluch-Cota and Alan Haynie

Outline

- Goals
- Methods
- Results
- Conclusions and future work

Sardine Landings in the Pacific

Goals

- Reproduce these cycles
- Build onto physical model
- Start simple but not too simple

Model Components

- Physics
- NPZ
- Fish
 - -Species 1
 - -Species 2
 - Predatory fish
- Fishing fleet

Superindividuals

Methods

- "Fish" as modified floats
- Fixed number of fish
- Feedback to NPZ
- Fish-eat-fish
 - Adults eat eggs
 - Predatory fish
- Fishing once per day

Parallel Computing (MPI)

- Domain decomposition
- Each process has one tile, but knows about all fish
- Update fish on own tile
- Exchange at end of timestep

Behavior

- Eggs and yolk-sacs are advected by currents
- Larger fish swim with sizedependent speed
- Choice of behavior:
 - Humston: optimize temperature (kinesis)
 - Railsback: maximize growth (fitness)
- No spawning migration yet

Available eggs

Bisection

Another Example

Mortality #1: Predators

fish_list on Master process

Fish-eat-fish

- Loop through fish on tile if I eat fish:
 - Eat fish in own cell
 - Are they the kind I eat?
 - Look over whole water column for now
 - Worry about order? It's always going to be the same unless explicitly randomized

Mortality #2: Fishing Fleet

- Western US sardines
- Movement once per day
- Maximize
 revenue based
 on expected
 CPUE

Forty-year Run

Arctic Region Supercomputing Center

Arctic Region Supercomputing Center

Conclusions

- We are well on the way towards having a full lifecycle model of fish in ROMS
- These fish represent small pelagics, up to 5-10 species
- Depends on bioenergetics data
- Need to "prime the pump" with adult fish, then run for decades

Future Plans

- Tuning of fish bioenergetics and behavior
 - Warm/cold behavior switch
 - Migration
 - Starvation
- Look to neighboring cells

