

Sünnje L. Basedow¹, Meng Zhou² & Kurt S. Tande¹

¹ University of Nordland, Bodø, Norway

²University of Massachusetts, Boston, USA

Polar Front 2008 IPY-NESSSAR

Norwegian Sea 2003

Objectives

- Analyse the response of the mesozooplankton community to spatial patterns of the phytoplankton community
- Analyse differences and similarities between the subpolar and the polar system

Data collection

- Scanfish equipped with CTD-F and OPC or Laser-OPC
- Additional water and net samples
- At Polar Front also grazing experiments

 Data were binned for spatial maps

Study area Polar Front

Ice edge phytoplankton bloom

Ice edge phytoplankton bloom

1.6

8.0

60

70-

Ice edge phytoplankton bloom

7.5

6.0

4.5

3.0

1.5

30

40

50-

60-

70-

Biovolume spectra - Polar Front

Biomass fluxes though a biomass spectrum

Zhou 2006 J Plankton Res 28

Biovolume spectra Polar Front

Computing trophic indices

Trophic indices estimated by biovolume spectrum theory

Apr 30-May 2 10-12 May 14-15 May

Arctic Water

3.6

2.2

3.1

Polar Front Water

2.1

1.7

2.1

Atlantic Water

3.9

2.0

1.7

and by stable isotope analyses

Spring

Winter

1.6-2.4

2.6-3.1

Søreide et al.2006 Prog Oceanogr 71

Grazing at the polar front

- No grazing experiments from Atlantic Water, but results from Arctic and Polar Front Water confirm estimates obtained by biomass spectrum theory:
- Highest filtration and ingestion rates on phytoplankton were observed in diatom bloom in Mixed Water (filtration rates up to 4.6 ml cop⁻¹ L⁻¹ and ingestion rates up to 17.2 ng chl a cop⁻¹ L⁻¹)
- Outside blooms, flagellates and cilitates were consumed.

Study area Norwegian Sea

Chlorophyll and Calanus Norwegian Sea

Basedow et al 2006 J Plankton Res 28

Biovolume spectra – Norwegian Sea

Grazing in the subpolar Norwegian Sea

- Where young copepodite stages of *Calanus* dominated, phaeophytin:chl a ratios were elevated and significantly higher than in areas where CIV-CVI dominated.
- No trophic index could be estimated for young copepodites
- The trophic index for CIV-CVI estimated by biomass spectrum theory was 3.2, indicating feeding on microzooplankton

Differences and similarities between the subpolar Norwegian Sea and the polar front in the Barents Sea

- Oceanic subpolar system vs. neritic polar system
- Large input of meroplanktic larvae into polar system, large input of Calanus into subpolar system.
- Patchy distribution of phytoplankton in both systems, related to ice edge in the polar system.
- The trophic index of *Calanus* was highly variabel over short spatial distances and closely related to the phytoplankton bloom, omnivory was observed at the polar front and indicated in the subpolar area.

Conclusions & Outlook

- •Trophic indices estimated by biovolume spectrum theory agreed well with TLs estimated by stable isotopes, and with results from grazing experiments.
- •Combining three-dimensional high-resolution sampling with biovolume spectrum theory proved to be a powerful tool to analyse the spatial patterns of the trophic structure in a dynamical area
- •Next: Analyse spatial patterns of growth and mortality in relation to the front.