GeoCod

GEOMATICS FOR THE SUSTAINABLE MANAGEMENT OF FISH STOCKS LA GEOMATIQUE AU SERVICE DE LA GESTION DURABLE DES STOCKS DE POISSONS

Spatial-temporal variations in shifting ecosystems: A Geographically Weighted Regression (GWR) analysis in the Northwest Atlantic

Matthew Windle¹,

George A. ROSE², Rodolphe DEVILLERS³, and Marie-Josée FORTIN⁴

¹ Centre for Fisheries Ecosystem Research, Fisheries and Marine Institute, Memorial University
 ² Department of Geography, Memorial University
 ³ Department of Ecology and Evolutionary Biology, University of Toronto

Northern cod collapse

Northern Shrimp (Pandalis borealis)

Snow Crab (Chionoecetes opilio)

DFO SSR 2003/021

Factors that affect Northern cod spatial distribution

Climate

- NAO
- Bottom temperature
- Salinity
- Currents

Mortality

- Fishing
- Predation (adult and larval)
- Intra-species competition

Prey

- Capelin (most important)
- Shrimp
- Sand lance
- Crab (small)
- Others (e.g. Arctic cod)

Other

- Migrations
- Spawning/feeding
- Life stage

Spatial Variability of Variables

Study Objectives

- 1. To model the spatial relationships between <u>cod biomass</u> and <u>environmental</u> and <u>trophic variables</u> through time
- 2. To investigate spatial non-stationarity of relationships between cod and explanatory variables within 2J3KL
- 3. To compare Ordinary Least Squares (OLS) regression, Generalized Additive Models (GAM) and Geographically Weighted Regression (GWR) model performances

A Tale of Two Time Periods

1985-1994

- Dependent variable:
 - Cod biomass [log(kg)]
- Independent variables:
 - Cod biomass (t-1)
 - Capelin prob. occurr. (0-1)
 - Capelin (t-1)
 - B. Temperature (C)
 - Shannon diversity index
 - Species richness/evenness

1995-2009

- Dependent variable:
 - Cod biomass [log(kg)]
- Independent variables:
 - Cod biomass (t-1)
 - Capelin prob. occurr. (0-1)
 - Capelin (t-1)
 - B. Temperature (C)
 - Shannon diversity index
 - Species
 richness/evenness
 - Crab biomass [log(kg)]
 - Shrimp biomass [log(kg)]

Global Regression Models

• Ordinary Least Squares (OLS)

$$\gamma = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p + \varepsilon$$

• Generalized Additive Models (GAM)

$$\gamma = \beta_0 + f(x_1) + \dots + f(x_p) + \varepsilon$$

Non-parametric smoothing function

- Gaussian, Identity link function

Year

Local Regression Models

Geographically Weighted Regression (GWR)

$$\gamma = \beta_0(\mu, \nu) + \beta_1(\mu, \nu)x_1 + \dots + \beta_p(\mu, \nu)x_p + \mathcal{E}$$
Coordinates of Samples

- Estimates a set of local regression coefficients for each observation point
- Observations closer to location being predicted are given more weight (using spatial kernel)
- Shows how regression coefficients (relationships) can vary across space

GWR Fixed Spatial Kernels

GWR local regression coefficients

- GWR generates a set of regression coefficients for each regression (trawl) location
- Plot coefficients on a map to visualize spatial variation of coefficients
- Examples:
 - Shrimp coefficients (1995-2009)
 - Crab coefficients (1995-2009)

Ave. Significant Shrimp Coeff.

Ave. Significant Crab Coeff.

Summary of GWR Local R2

Comparison of Model Performance

- Akaike Information Criterion (AIC) Scores
 - The lower the AIC, the closer the approximation of the model to reality
 - AIC values that differ by more than 3 units considered significantly different
- Coefficient of variation (R²)

Model Performance Comparison

completed in 2004

Model Performance Comparison

R2 higher when cod stock is healthy \rightarrow cod distribution more predictable

Gradual increase in R2 over time \rightarrow cod distribution becoming more predictable

Conclusions

- Local spatial regression models have potential to outperform global analyses and can better explore spatial variability of fisheries data
 - Increase/decrease of explanatory variable in one location can predict cod in current/future year for same location
- Cod from previous year best predictor of cod distribution
- GWR coefficients reveal spatial patterns in locations of significant relationships between cod and crustaceans
 - Spatial pattern of significance temporally variable
 - Spatial pattern of direction temporally stable
- GWR outperformed OLS and GAM regressions, complimentary to global analyses

Acknowledgements

GEOIDE

- GEOIDE Network
- Canadian Center for Fisheries Innovations
- Fisheries and Oceans Canada
- Fisheries and Aquaculture Newfoundland

Pêches et Océans Canada

GEDMATICS FOR THE SUSTRINABLE MANAGEMENT OF FISH STOCKS

LA GEOMATIQUE AU SERVICE DE LA GESTION DURABLE DES STOCKS DE POISSONS

For more information visit the GeoCod website:

http://www.ucs.mun.ca/~rdeville/geocod

GEOMATICS FOR THE SUSTRINABLE MANAGEMENT OF FISH STOCKS

LA GEDMATIQUE AU SERVICE DE LA GESTION DURABLE DES STOCKS DE POISSONS