

Predicting copepod dormancy timing in response to climate change

Pierson, Runge, Head, Plourde, Johnson, Leising, Maps, Kimmel, Pershing, Gentleman

The original plan

Describe the NEW analysis of dormancy timing from all available time series data

- Show comparisons with model data to highlight model ability to predict dormancy timing
- Show scenario tests with the model to show timing changes with warming

U.S.GLOBEC

The New Plan

- Discuss life history metrics, their usefulness and importance to compare between and within species
 - Dormancy
 - Growth
- Predicting changes in life histories, specifically dormancy
- What's Next

Life history metrics

"Birth, School, Work, Death" Birth, School, Work, Death, *The Godfathers*, 1988

Calanus life cycle plasticity may lead to varied lipid utilization strategies

Various strategies may be found in one species:

e.g. Calanus marshallae

- ▶ 1 generation year-1

 Dabob Bay
- 2-3 generations year-1
 Oregon Shelf, Bering Sea

Life history metrics to consider for comparisons and prediction

- Development Rate
 - Generation Time
- Growth Rate
- Adult Size
- Fecundity
 - ▶ Per capita
 - Cumulative

- Dormancy Timing
 - Initiation
 - ▶ Termination

Reproductive Period

Development time to C6 varies by species

$$D_i(T) = \alpha_i(T + T_d)^{\beta}$$

$$\beta$$
 = -2.05
= -1.44 (C. sinicus)

Resulting Size vs. Time (by Stage)

U.S.GLOBEC

<u>Spatial</u> and temporal patterns in <u>Egg Production Rate</u>

<u>Spatial</u> and temporal patterns in <u>Egg Production Rate</u>

Growth period (Plourde) differs from non-dormant period

	% of Maximum Population EPR											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
GoM	0.57	0.71	1.00	0.72	0.29	0.53	0.36	0.23	0.09	0.09	0.02	0.11
SS	0.15	0.74	0.85	1.00	0.56	0.31	0.38	0.17	0.22	0.07	0.04	0.07
GSL	0.02	0.05	0.13	0.87	1.00	0.55	0.66	0.22	0.17	0.06	0.02	0.02
NL	0.04	0.11	0.47	0.62	1.00	0.12	0.33	0.09	0.18	0.07	0.03	0.05
NorSea	0.00	0.03	0.15	1.00	0.68	0.33	0.13	0.04	0.09	0.03	0.01	0.00
	N _{DT} >30	N _{DT} >30	N _{DT} >30									N _{DT} >30

Dormancy End (Johnson et al. 2008)

Dormancy Start (Johnson et al. 2008)

Plourde "Growth Period" = Pop EPR_{max} > 0.15

Predicting changes in life histories Specifically: Dormancy timing

"No sleep till Brooklyn" Licensed to III, *Beastie Boys*, 1986

What do we know about dormancy?

Direct Controls?

- Photoperiod
- **→** Temperature
- Food

__

Drivers

- Lipid volume
- Temperature controlled metabolic rates
- Mortality pressure?

Can we predict how *Calanus* dormancy might change with a warming climate?

Empirical Models

- Dormancy Duration
- Temperature and size dependent lipid utilization (Saumweber et al. 2006)

Numerical Models

- Size at Maturity and Dormancy Entry
- Temperature and food dependent growth and development
- Lipid & Dormancy parameters using the Lipid Accumulation Window (LAW) hypothesis

cf. Johnson et al 2008

Dormancy timing changes: total lipid accumulation

Dormancy duration (days) changes with temperature increase and size decrease

Demographics and dormancy timing off Iceland

U.S.GLOBEC

AZMP Time Series Data

Dormancy timing NOT related to more things than it is related to...

Next steps for our project

"Your time is gonna come" Your Time is Gonna Come, *Led Zeppelin*, 1969

Runge et al. GLOBEC PRS Objective and Hypothesis

Review and synthesize knowledge for sibling species:

C. finmarchicus and C. helgolandicus in the North Atlantic

Hypothesis:

"The timing of <u>entry and exit from dormancy</u>, as modulated by species-specific physiology and effects of climate-forced variability of food and ambient temperature on lipid accumulation, exerts an important control on population dynamics."

U.S.GLOBEC

Directions & Partnerships

