

Measuring Resilience

Wealth from Oceans Flagship

Beth Fulton

April 2011

Warnings

The question

Identify means of determining ecosystem resilience or vulnerability

Resilience

Engineering resilience = stability around equilibrium

Engineering resilience = return time

 Ecological resilience = absorb shocks & retain 'same' structure & function

Panarchy

Set of dynamic systems nested across scales

Includes Variance

Ecological resilience

Space & Time

Ecological resilience

Ecological resilience

System Dynamics

External drivers

System Dynamics

Internal processes

System Dynamics

Internal processes

Management & Resilience

Management & Resilience

Removal of Heterogeneity

Homogeneous Change

Management & Resilience

Adaptive management

respond to change

- find thresholds

avoid thresholds

support resilience

Measuring Resilience

How the heck do you measure it ?!

Impossible?

Ecological resilience is difficult to assess and measure a priori and is often known only after the fact...

Gunderson, Holling and Allen 2010

Thresholds

- Use thresholds as limits
 - need to know threshold points

Thresholds

- Existing threshold (if known)
 - threshold value?
 - current state vs threshold value?
 - trajectory of state vs threshold value?
- Slow variables influence thresholds
 - how are slow variables changing?
 - which factors control slow variables?

Finding Thresholds

- Observed alternative system states
 - coral reefs (coral vs algae vs urchin barren)
 - kelp forests (kelps vs urchins vs crabs)
 - shallow seas (seagrass vs phytoplankton)
 - benthos (lobsters vs whelks dominant)
 - oceans (vertebrates vs invertebrates, demersal vs small pelagic fish)
 - upwellings (anchovy vs sardine)
 - Antarctic (krill vs salp based)

Role of Models

How find thresholds?

Experiments

- active adaptive management
- can be costly (\$ and politically)
- ethical issues if irreversible

Explore via models

- resource intensive
- archetype models give clues?

Ecosystem Quantity

- Map alternative ecosystem states
 - often data intensive
 - habitats, satellite detectable, BIG surveys
- Outputs
 - maps (mosaics)
 - mean-variance analysis = phase space

Looking for Edges - Ecotones

Ecotones

- edges of alternative ecosystems
- poised on thresholds
- 1st places to respond to change (for landscape processes)
- moderately successful

Looking for Edges - Size

- Clumps of species around critical process scales
 - marine examples?

Allen et al (2005)

Ecosystem Quality

Diversity (e.g. species counts)

Redundancy & Diversity

- Diversity = surrogate
 - key processes (determining resiliency)
 - insurance (rebuilding under change)
- Not all species equal
 - drivers and passengers
 - functional diversity (& redundancy)
 - response diversity

Ecosystem Function

Reorg / Renewal Conservation (climax) Increasing stored capita Release (disturbance) Exploitation (growth)

Increasing connectedness & organisation

Diversity Meta-theory

Diversity Meta-theory

Diversity Meta-theory

Redundancy & Diversity

- Not all species equal
 - drivers and passengers
 - functional diversity (& redundancy)

What's Needed?

- Relative biomass
 - fast (plankton, gelatinous, forage)
 - targets (demersal, piscivore)
 - slow (top predators)
- Habitat
- Size spectra
- Diversity
- Function associated
- Physical (°C, pH, nutrients)
- Social
- Economic

Summary

- Resilience = level disturbed before lose identity
- Need knowledge of alternative states
- Surrogates = an option
- We might be collecting the right stuff already
 - probably **not** doing correct stats yet

CSIRO Marine & Atmospheric Research

Dr Beth Fulton CEO Fellow

Phone: +61 3 6232 5018
Email: beth.fulton@csiro.au

Web: www.csiro.au/wfo

www.cmar.csiro.au

Thank you

Contact Us

Phone: 1300 363 400 or +61 3 9545 2176

Email: enquiries@csiro.au Web: www.csiro.au

