A FRAMEWORK FOR **SELECTION OF ECOSYSTEM INDICATORS** FOR THE CALIFORNIA **CURRENT AND PUGET** SOUND INTEGRATED **E**COSYSTEM **A**SSESSMENTS

Phillip Levin

Jameal Samhouri, Kelly Andrews, Greg Williams, Isaac Kaplan, Andy James, Jessi Kershner

The question

- How do we meaningfully measure ecosystem "health"?
 - i.e., how do we assess the status of the ecosystem or the effectiveness of management?

What does meaningful mean?

Conservation Psychology (Saunders 2003)

Personal connections to species, habitats, ecosystems, etc

Social norms and discourses

What does meaningful mean?

Ecology and Conservation Biology

Meaningfully evaluating ecosystems requires development of indicators that are meaningful

Meaningfully evaluating ecosystems requires development of indicators that are meaningful

Overall approach

- Define and Operationalize objectives
- Generate list of potential indicators
- Map potential indicators on to framework
- Evaluate scientific rigor of indicators
- Rank indicators
- Generate indicator portfolios
- Assess social value of indicator portfolios

Ecosystem check-up or Diagnostic Assessment

VITAL SIGNS

DIAGNOSTIC ASSESSMENT

Overall approach

- Define and Operationalize objectives
- Generate list of potential indicators
- Map potential indicators on to framework
- Evaluate scientific rigor of indicators
- Rank indicators
- Generate indicator portfolios
- Assess social value of indicator portfolios

In Puget Sound...

- What is a healthy Puget Sound?
- What is the status of Puget Sound, and what are the biggest threats?
- Public workshops, expert topic forums, and meetings with managers
- >1,600 people attended public workshops,
- 75 presentations were given to business and community organizations
- 11,182 public comments were received

6 goals emerged

- a) Human health
- b) Human well being
- c) Species & food webs
- d) Habitats;
- e) Water quantity
- f) Water quality

Indicators

Overall approach

- Define and Operationalize objectives
- Generate list of potential indicators
- Map potential indicators on to framework
- Evaluate scientific rigor of indicators
- Rank indicators
- Generate indicator portfolios
- Assess social value of indicator portfolios

Goals

- Combination of societal values and scientific understanding that defines a desired ecosystem condition
 - U.S. Environmental Protection Agency (2002). A Framework for Assessing and Reporting on Ecological Condition: A Science Advisory Board Report. T. F. Young and S. Sanzone. Washington, D.C.

Focal ecosystem components

- The major ecological components of an ecosystem
- Emerge directly from management goals
 - Conservation Measures Partnership (2007). Open Standards for the Practice of Conservation, Version 2.0.

Goal Focal component

Key attribute

- Key attributes are the characteristics that define the structure, composition, and function of focal ecosystem components
 - Harwell, M. A., V. Myers, et al. (1999). "A framework for an ecosystem integrity report card." <u>Bioscience</u> **49**(7): 543-556.

Goal Focal Attribute component

Indicator

- Quantitative measurements that serve as proxies for characterizing key attributes of natural and socioeconomic systems
 - Heinz Center (2008). The State of the Nation's Ecosystems 2008: Measuring the Lands, Waters, and Living Resources of the United States, Island Press.

Indicator FRAMEWORK/ORGANIZATION

Overall approach

- Define and Operationalize objectives
- Generate list of potential indicators
- Map potential indicators on to framework
- Evaluate scientific rigor of indicators
- Rank indicators
- Generate indicator portfolios
- Assess social value of indicator portfolios

Objectively Evaluate Indicators

Each indicator evaluated on 18 criteria based on **peer reviewed science** Criteria based on lit. review

O'Connor and Dewling 1986; Landres, Verner et al. 1988; Noss 1990; Harwell, Myers et al. 1999; Jackson, Kurtz et al. 2000; Kurtz, Jackson et al. 2001; Rice 2003; Jennings 2005; Jorgensen, Costanza et al. 2005; Rice and Rochet 2005; Niemeijer and de Groot 2008; Doren, Trexler et al. 2009

Primary considerations

Primary considerations	Data Considerations	Other
Theoretically sound		
Relevant to management goals		
Responds to changes in attributes		
Responds to changes in management actions		
Linkable to management reference points		

Primary considerations

Primary considerations	Data Considerations	Other
Theoretically sound	Concrete	
Relevant to management goals	Historical data available	
Responds to changes in attributes	Operationally simple	
Responds to changes in management actions	Numerical	
Linkable to management reference points	Spatial and temporal variation understood	
	High signal-to-noise ratio	

Primary considerations

Primary considerations	Data Considerations	Other
Theoretically sound	Concrete	Understood by public & policy makers
Relevant to management goals	Historical data available	History of reporting
Responds to changes in attributes	Operationally simple	Cost-effective
Responds to changes in management actions	Numerical	Anticipatory or leading indicator
Linkable to management reference points	Spatial and temporal variation understood	Nationally /internationally compatible
	High signal-to-noise ratio	

Test indicator performance by perturbing food web models \rightarrow Δ attributes, indicators

No t so meaningful indicator

Attribute value

Northern British Columbia

Food Chain Length

Diversity

Total respiration

Negative Correlation Positive Correlation

Overall approach

- Define and Operationalize objectives
- Generate list of potential indicators
- Map potential indicators on to framework
- Evaluate scientific rigor of indicators
- Rank indicators
- Generate indicator portfolios
- Assess social value of indicator portfolios

Coarsely Rank Indicators

- Weight Evaluation Criteria not all are equally important
- For CC IEA we polled managers to get weightings
- For Puget Sound, a mixed science-policy group generate weightings in a workshop setting

Understood by public and policy makers	Spatial and temporal variation understood	Broad spatial coverage
1	0.25	0.5

Retrospective	Lagging, diagnostic	Lagging, broadly informative
Early warning <	Leading, diagnostic	Leading, broadly informative
	Diagnostic <	> Non-specific

Overall approach

- Define and Operationalize objectives
- Generate list of potential indicators
- Map potential indicators on to framework
- Evaluate scientific rigor of indicators
- Rank indicators
- Generate indicator portfolios
- Assess social value of indicator portfolios

Assessing social value of indicators

Psychology, Sociology, Behavioral Economics

- •Evaluate currently held values related to ecosystem indicators
- Focus groups, phone surveys, internet surveys

Goodhart's Law

"Any observed statistical regularity will tend to collapse once pressure is placed upon it for control purposes"

- Charles Goodhart - Chief Adviser to the Bank of England in the 1970s.

"When a measure becomes a target [for management], it ceases to be a good measure"

-Hoskin 1996.

Goodhart's Law

a known widespread issue

- Health care
- Education
- Monetary policy
- Social welfare (e.g. indices of happiness)
- Traffic management
- Conservation of European bird diversity

I only want ONE indicator for food webs!

But you need 700

Strategy

Outcome / Implementation Outcome / Threat Reduction Impact on Ecosystem Component

