Climate and anthropogenic effects on structure and functioning of the North Sea ecosystem

Christian Möllmann, Rabea Diekmann, Jens Floeter & Axel Temming

University of Hamburg, Institute for Hydrobiology and Fisheries Science

Methods & Analyses

- Generalized Additive Models (GAMs)
- Non-Additive Threshold-GAMs (T-GAMs; Ciannelli et al. 2004)
 - Finds periods with and without (or different functional) relationships & and a threshold

1. AMO & NAO effect on North Sea SST

 Additive models vs. non-additive (effect of NAO relative to AMO)

2. AMO, NAO & SST effects on Trophic Levels

- Additive AMO- & NAO-models vs. SST-models
- Non-additive vs. additive AMO- & NAO-models

3. AMO & Fisheries effects on Trophic Levels

Non-additive vs. additive AMO- & Fishing mortality-models

Data

Data (1963- 2007)

- Plankton Continuous Plankton Recorder (SAHFOS)
- •Fish multispecies fisheries model output (SMS)

Trophic Level Indicators

Phytoplankton: CPR "phytoplankton colour index"

Zooplankton: CPR "total copepods"

Planktivores: herring, sandeel, norway pout

Piscivores: Cod, haddock, saithe, whiting

•SST (Hadley 3), North Atlantic Oscillation (NAO), Atlantic Multidecadal Oscillation (AMO)

1 – Climate effect on North Sea SST

Additive Climate-SST relationship

Generalized Additive Model (GAM): $r^2 = 0.663$; both predictors p < 0.001

Non-Additive Climate-SST relationship

<u>Threshold Generalized Additive Model</u> (TGAM): $r^2 = 0.723$

Predictor	AMO-state	P - values
AMO	low	0.733
AMO	high	< 0.001
NAO	low	< 0.001
NAO	high	0.904

Conclusions

- TGAM "better" than GAM
- •AMO has significant effect when in a "high state"
- •NAO has ONLY a significant effect when AMO is low!

2 – Climate/SST effect on North Sea ecosystem

Phytoplankton vs. Climate – Additive

r² = 0.246; p < 0.001

Zooplankton vs. Climate – Additive

<u>Univariate Model:</u> $r^2 = 0.144$; p < 0.05

<u>Planktivores</u> vs. Climate – <u>Additive</u>

Generalized Additive Model (GAM):

 $r^2 = 0.177$; AMO – p < 0.02

Generalized Additive Model (GAM):

 $r^2 = 0.133$; SST – p < 0.05

<u>Piscivores</u> vs. Climate – <u>Additive</u>

Univariate Model:

 $r^2 = 0.308$; p < 0.001

Phytoplankton vs. Climate – Non-Additive

<u>Threshold Generalized Additive Model</u> (TGAM): $r^2 = 0.520$

Predictor	AMO-state	P - values
AMO	low	0.401
AMO	high	< 0.001
NAO	low	< 0.01
NAO	high	0.841

Conclusions

- TGAM "better" than GAM
- •AMO has significant effect when in a "high (warm) state"
- •NAO has ONLY a significant effect when AMO is low (cold state)!

<u>Trophic Levels</u> vs. Climate – **Additive** vs. **Non-Additive**

Predictor	AMO-state	Phyto- plankton	Zooplank- ton	Planktivores	Piscivores
AMO	low	0.401	< 0.01	< 0.05	< 0.01
AMO	high	< 0.001	< 0.05	< 0.01	< 0.001
NAO	low	< 0.01	< 0.01	0.348	0.274
NAO	high	0.841	0.884	0.195	< 0.001
T – GAM	-	r ² =0.520	r ² =0.390	r²=0.421	r ² =0.498
GAM	-	r ² =0.404	r ² =0.332	r ² =0.177	r ² =0.465

3 – Climate & fishing effect on North Sea ecosystem

<u>Piscivores</u> vs. Climate & *Fishing* – **Additive**

<u>Generalized Additive Model (GAM):</u>

$$r^2 = 0.437$$
; AMO – p < 0.001; F – p < 0.01

<u>Piscivores</u> vs. Climate & *Fishing* – **Non-Additive**

Threshold Generalized Additive Model (TGAM): $r^2 = 0.458$

Predictor	AMO-state	P - values
AMO	low	0.094
AMO	high	< 0.01
F	low	< 0.001
F	high	0.563

Conclusions

- •Fishing has only a significant effect when AMO is low (in a cold state!
- •When AMO is high (in a warm state), fishing effect not detectable anymore!

"Cascading AMO-effect" on Trophic Levels

Summary

 <u>Multidecadal</u> (AMO) and <u>decadal</u> (NAO) climate effects seem to determine North Sea SST in a non-additive way (NAO only important when AMO is low)

Trophic Levels

- Additive models of AMO & NAO generally perform better than simple SST-model
- Non-additive models (T-GAMs) perform generally better than additive models (GAM)
- For lower TLs NAO only important when AMO is in a low (cold) state
- For higher TLs this pattern slightly reverses (impact of fishing?)
- Effect of fishing on <u>Piscivores</u> only significant when AMO low (i.e. a cold state-positive for piscivores); when AMO is high (i.e. warm state-negative for piscivores) fishing "does not matter" anymore
- AMO shows a striking "cascading effect" on TLs, which indicates tremendous trophic reorganization with warming

Thanks!

