The Framework for Ocean Observing: Best Practices for the Global Observing System

My apologies for not attending. I would love to be there! Some temporary health issues have prevented me from travelling. Best of luck for the conference in Yeosu!

Eric Lindstrom

NASA Headquarters

and

John Gunn

Australian Institute of Marine Sciences

and

Albert Fischer

Intergovernmental Oceanographic Commission

and

Andrea McCurdy Consortium for Oceanleadership

and

Candyce Clark IIS National Oceanic and Atmospheric

OUTLINE

- Where are we with ocean observations today?
- OceanObs'09 and the motivation for a new way of thinking
- Framework for Ocean Observations
- Conclusion
- Charge to W1 Friday 18 May all invited!

The Global Ocean Observing System (GOOS)

- the system GOOS
 - collaborative system of sustained observations
 - built on requirements
 - in situ and satellite
 - operational and research funding
 - linked to data management and product generation activities
 - global-scale and coastal
- the GOOS programme
 - advocacy for all elements of the system
 - provide a platform for collaboration
 - promote global participation
 - animating Framework for Ocean Observing processes
 - in collaboration with other partners, adapting structures in stable and stepwise way, assessing and encouraging the readiness of components
 - integrating new observations while sustaining present ones

Ocean observing system for climate – drawing from best practices

Requirements for Essential Climate Variables

GOOS for climate global participation varies by network

OceanObs'09

Ocean information for society: sustaining the benefits, realizing the potential

Why a Framework? (www.oceansobs09.net)

- OceanObs'09 identified tremendous opportunities, significant challenges
- Called for a framework for planning and moving forward with an enhanced global sustained ocean observing system over the next decade, integrating new physical, biogeochemical, biological observations while sustaining present observations

Sponsors and Task Team

Keith Alverson, Bee Berx, Peter Burkill, Francisco Chavez, Dave Checkley, Candyce Clark, Vicki Fabry, Albert Fischer, John Gunn (co-chair), Julie Hall, Eric Lindstrom (co-chair), Yukio Masumoto, David Meldrum, Mike Meredith, Pedro Monteiro, José Mulbert, Sylvie Pouliquen, Carolin Richter, Sun Song, Mike Tanner, Martin Visbeck, Stan Wilson

- IOC Intergovernmental Oceanographic Commission of UNESCO
- GEO Group on Earth Observations
- CEOS Committee on Earth Observation Satellites
- POGO Partnership for Observation of the Global Oceans
- SCOR Scientific Committee on Oceanic Research
- SCAR Scientific Committee on Antarctic Research
- GCOS Global Climate Observing System
- GOOS Global Ocean Observing System
- **JCOMM** Joint WMO-IOC Tech. Comm. for Oceanography and Marine Meteorology
- PICES North Pacific Marine Science Organization
- ICES International Council for the Exploration of the Sea
- CoML Census of Marine Life
- **IGBP** International Geosphere-Biosphere Programme
- WCRP World Climate Research Programme

Key Conceptsof the Framework

- Articulates 'best practices' based on a 'systems approach' for building an interoperable system
 - Establishes "Essential Ocean Variables (EOVs)" as basis for aligning elements of the system.
 - Proposes an approach to introducing new components of the system through "Readiness Levels"
- Argues that an "Integrated Observing System" will be a derivative of the Framework processes.

Boundaries of the Framework

Requirements Setting What to Measure Essential Ocean Variables OceansITES Satellite Constellation VOS SOOP Satellite Observations Deployment and Maintenance

Outside the Framework

- Quantitative Analysis
- Application of Science to Societal Issues
- Qualitative Analysis
- Policy Questions

A Simple System

Structure of the Framework

Readiness Levels

Mature:

Requirements, systems, and data become elements of the sustained global ocean observing system,

Pilot:

Plans evolve from Increasing Readiness Levels draft to projects and vetted in real-world implementation.

Concept:

Initial articulation of ideas, and appropriate feasibility studies.

Attributes:

Products of the global ocean observing system are well understood, documented, consistently available, and of societal benefit.

Attributes:

Planning, negotiating, testing, and approval within appropriate local, regional, global arenas.

Attributes:

Peer review of ideas and studies at science, engineering, and data management community level.

Highest Readiness Level Pilot

Requirements

Observations

Data & Information

Mature

Concept

- Requirements: Sensors & Scales
- What to Measure: Essential Ocean **Variables**
- Observations: Facilities & Management
- Data: Infrastructure & Assembly Centers
- Information: Products and Services

Highest Readiness Level

Requirements

Mature

- Sustained implementation and under periodic review
- Mission qualified at regional and/or global scale
- Consensus on observation impact or <u>fitness-for-purpose</u>

Pilot

- · Deployment in an operational environment
- Verification of the spatial and temporal sampling strategy
- Measurement strategy verified by sea <u>trial</u>

Concept

- · Proof-of-concept determined via feasibility study
- · Measurement strategy documented
- · Environment information identified

Highest Readiness Level

Observation Deployment & Maintenance

Mature

- · System is sustainable globally and under periodic review
- · Implementation details fully qualified
- · Peer review and deployment demonstrate fitness-for-purpose

Pilot

- Maintenance and servicing logistics operationalized
- International commitments to sustaining components <u>verified</u>
- Trial project in an operational environment

Concept

- Operational, scalable, and technology proof-of-concept
- Observing platforms technology and design are <u>documented</u>
- · Idea for measuring system is formulated

Highest Readiness Level

Data Management and Products

Mature

- · Sustained products available and under user group review
- Data globally available and of <u>service</u> to the community
- · Data management and distribution determined to be fit-for-purpose

Pilot

- Data <u>operational</u> through system-wide availability and use
- Data and archival plans and practices <u>verified</u>
- Data management practices determined and <u>tested</u> for quality and accuracy throughout the system

Concept

- Data model <u>proven</u> to meet observational needs
- Interoperability model is <u>documented</u> and socialized
- · Data model is identified and articulated

Highest Readiness Level	Requirements	Observations	Data & Information
Mature	 Sustained: standard quality, periodic review, interoperable Mission-qualified: stability, scalability, utility Fitness-for-purpose: validation, peer review 		
Pilot	Operational: refinement, implementation plans, demonstration Verification: sampling, governance, standardization Trial: at sea, operational projects, management practices		
Concept	 Proof-of-concept: feasibility, scalability, credibility Documentation: strategic and tactical descriptions, socialization Idea: identification, formulation, specification 		
Lowest Readiness			

Level

Framework: Societal Driver 2012

Framework: Societal Drivers Next Decade

Regional Ecosystem Weather & Climate Assessments Regional Seas services/ ·UNFCCC/IPCC Global Marine (UN) ·CCAMLR Biology WCRP TWAP (GEF) ·CBD Climate services Regional **Fisheries** ·CSD ·FAO Real-time services ·WSSD ·RFMOs Emergency support

Ocean forecasting

Driven by requirements, negotiated with feasibility

Essential Ocean Variables

- We cannot measure everything, nor do we need to
- Basis for including new elements of the system, for expressing requirements at a high level
- Driven by requirements, negotiated with feasibility
- Allows for innovation in the observing system over time

CONCLUSION

- New way of thinking and organizing
- Essential Ocean Variables (EOVs)
- Assessment of readiness
- Multi-disciplinary will lead to a wider set of products and services for community
- Charge for Workshop 1 Friday 18 May

W1 Workshop: Ocean Observations: Strategic framework – Friday 18 May

Requirements Setting
What to Measure
Essential Ocean Variables

Argo OceanSTES Satellife

Argo Constellation ...

VOS

SOOP Satellite

Observations Deployment
and Maintenance

Chair: David CHECKLEY and Candyce CLARK

CHALLENGE TO PICES AND SESSION 2 PARTICIPANTS:

- •What Essential Ocean Variables (EOVs) would you like to see?
- •PICES should be involved in coordination and assessing requirements and fitness-for-purpose --- HOW?
- •How to integrate new biogeochemical, biodiversity and ecosystem observations into a sustained observing system?
- •Please come early career scientists encouraged to come and shape the future!

Characteristics

- Common language and consistent handling of requirements, observing technologies, and information flow among different, largely autonomous, observing elements
- Seeks to support self-funding and self-managing elements
- Essential Ocean Variables as common focus
- Assessment and promotion of Readiness
- Coastal and open ocean
- An "Integrated Observing System" will be a derivative of an EOV-based approach driven by requirements.

Back-up Slides

Stakeholders, Roles and Governance

- The Task Team considered several approaches for governing the Framework and agreed it must be:
 - Characterized by Simplicity
 - Based on Functional Needs
 - Bring Stakeholders Together
 - Nominal Operating Costs
- Requires ongoing engagement of international sponsors and other bodies comprised of:
 - Oversight and Coordination Bodies
 - Expert Teams and Reviews
 - Implementation Plans and Teams
- Recommends establishment of a Framework Steering Group representative of international sponsors of OO'09:
 - Adopted by IOC, GOOS
 - First meeting in late June

Benefits

- For Ocean Observing Communities
 - Focus on variables allows innovation, research, while sustaining the key output of the observing system
 - Clear path to selling utility of observations to high level, articulation of societal importance
 - Learn from best practices and principles of other observing systems
 - Reduce/remove duplication of measurements
 - Clearer entry points for the needed coordination; crossdisciplinary positive synergy: shared platforms, data systems
 - Other data available to set your data in context

Requirements Setting within the Framework

Functional Primary Groups Activity Oversight Panel Requirements What to Measure (Oversight & Coordination) Variables (EOVs) **Expert Teams** Sampling Requirements (Expert EOV Implementation Strategies Review) Implementation Feasibility Assessment Communities How to Measure (EOV Implementation)

Observation Deployment & Maintenance within the Framework

Functional Groups

Primary Activity

Oversight Panel
(Oversight &
Coordination)

- Governance
- Deployment
- Commitments

Expert Teams (Expert EOV Reviews)

- Identify Synergies & Best Practices
- Promote Standards
- Technology Infusion

Implementation Communities (Observing Element Teams)

- Trade-Space Determination
- Quality Control
- Technology & Standards Maturation
- International Cooperation

Functional Groups	Primary Activity	
Oversight Panel (Oversight & Coordination)	 Feedback Into Requirements Process & Validation of Requirements 	
Expert Teams (Expert EOV Reviews)	 IT & Data Management Teams (Global, GTS, CEOS) Latency, Aggregation Promotion of Standards & Interoperability 	
Implementation Communities (Observing Element Teams)	Verification and Validation Definition & Data QC Product Development	

Governance Structure for Sustained Global Ocean Observing

Framework Steering Group Members / Appointed by Sponsors

Oversight & Coordination

Management

Review/Development of Requirements

Convention Negotiation

Facilitate Community-wide Coordination and Alignment

· Endorsement of Mature Elements

Ocean Observing Panels / Appointed by Steering Group

Physical Panel

BioGeoChem Panel

Bio/Ecological Panel

· Build on OOPC

· Build on IOCCP and

· Could draw on PICO Plan

related projects

Expert Reviews Develop new EOVs

Articulate Best-practices

Assess Readiness Levels

Review and ensure fit-for-purpose system outputs among EOVs

Develop Implementation Strategies

Coordinate National, Regional, Local Activities

EOV Expert and Implementation Teams / Identified by Steering Group & Panels

EOVs: SST/Sea Level/pCO2*/Plankton*/Alkalinity*/Transport*/Other*(*-potential)

Observing

Improve Readiness Levels (Design Pilots, New Products)

Element Teams Develop Implementation Plans

· Improve Literacy (Train experts, Educate Users, Facilitate Integration)

Coordination

감사합니다