Sustained observations of mesoscale and submesoscale surface circulation off the U.S. West Coast

Sung Yong Kim^{1,*}, Eric Terrill¹, Bruce Cornuelle¹, Burt Jones², Libe Washburn³, Mark Moline⁴, Jeffrey Paduan⁵, Toby Garfield⁶, John L. Largier⁷ Greg Crawford⁸ and P. Michael Kosro⁹

¹Scripps Institution of Oceanography

²University of Southern California

³University of California, Santa Barbara

⁴California Polytechnic State University

⁵Naval Postgraduate School

⁶San Francisco State University

⁷University of California, Davis

⁸Vancouver Island University, Canada

⁹Oregon State University

*syongkim@mpl.ucsd.edu

** The order of co-authors is geographically assigned.

Outline

- Introduction
 - What's oceanic sub-meososcale and mesoscale?
 - Surface current measurement using high-frequency radar (as a part of coastal ocean observing system)
- Details of observed surface circulation
 - Driving forces of surface circulation
 - Low frequency signals trapped near the coast
 - Statistics of sub-meososcale edddies
 - Applications of surface transport model (e.g., river/outfall discharges and oil spill)
- Summary

Oceanic processes in time and spatial scales

Oceanic processes in time and spatial scales

Coastal Ocean Observing System (COOS)

Radio signals used in high-frequency radar

3-30 MHz (between AM radio and TV) Wavelength (λ_r) : 10 $^{\sim}$ 100 (m)

Bragg backscattering
When the radar signals are backscattered in phase,

$$\lambda_{\rm w} = \lambda_{\rm r}/2$$

HFR surface current maps off the USWC (Cascade maps)

Variance of surface currents (alongshore view)

Variance of surface currents (alongshore view)

- Variance coherent with tides, wind, low frequency signals, and Coriolis force.
- Regional noise levels

Subinertial alongshore surface currents

- Rotated currents following the shoreline
- Daily averaged alongshore surface currents.
- Seasonal California Currents.
- Phase speeds of 10 and 100 – 300 km/day
- Slower mode feature is found in southern CA

Sub-inertial alongshore surface currents (zoom-in)

Poleward progression of convergence front.

Eddy detection on HFR surface currents

- Streamlines (nearly closed polygons) are identified with winding angle method.
- Co-centered streamlines are fitted into an ellipse.
- If the center of ellipses in consecutive time steps is within a drifting range (e.g., 1.5 km) with the same rotation, ellipses are considered as a part of an eddy time series. The length of time series is called as persistency

Demography of sub-mesoscale eddies

Using flow geometry of the stream functions.

A cluster of streamlines is fitted with an ellipse. (Kim CSR, 2010)

Vorticity at the center of eddies.

About 2200 eddies for each rotation are identified (at least two days persistence).

Lagrangian particle track model

- Objectively mapped surface currents
- Forward time integration
- Particle concentrations vs. water quality samplings
- ROC (Receiver Operating Characteristics) analysis

Exposure map (2D PDF)

Sources	Location		Discharge type	Flow rate (m ³ s ⁻¹ (MGD))
	Longitude (W)	Latitude (N)	Discharge type	Flow rate (III's '(MGD))
TJR	32.5556	117.1369	Wet season	~ 2.9 (66)
SBO	32.5373	117.1835	Plume surfacing	$\sim 0.9 (20)$
PBD	32.4336	117.1100	Continuous	1-1.5 (22-35)

Exposure map normalized by # of particles at the source location. (when each source is active)

Hyperion Discharge & oil spill experiment

Summary

- The operational USWC HFR network as a backbone of regional coastal ocean observing system (ROOS) provides the detailed aspects of coastal surface circulation and ocean dynamics at a resolution (km in space and hourly in time) of never before resolved.
- Observed surface currents contain responses to the low frequency, tides, wind forcing, and Earth rotation.
- HFR observations can be a useful resource to study surface circulation, eddies and interaction of energy at submesoscale, and ocean state estimates and can provide various environmental applications.