Assessment of climate change impacts on marine ecosystems in East Antarctica:

outcomes of a research collaboration between Australia & Japan

So <u>Kawaguchi</u>¹², Mitsuo Fukuchi³ Andrew Constable¹² and Anthony J Press²

- 1) Australian Antarctic Division
- 2) ²Antarctic Climate and Ecosystems Cooperative Research Centre
- 3) National Institute of Polar Research, Japan

Outline

- What's happening in Antarctica?
- Why Australia-Japan Collaboration?
- Project outcomes and the way forward
- Southern Ocean Sentinel

Warming

 Parts of Antarctica (e.g. Antarctic Peninsula) are demonstrating one of the most rapid warming paces on the globe.

Sea Ice: Future Projections

- Further decrease in the future
- Difference in rates depending on region

Figure 10.14. Multi-model mean sea ice concentration (%) June to September for the periods 1980 to 2000 and b) 2080 to 2100 for the SRES A1B scenario. The dashed white line indicates the present-day 15% average sea ice concentration limit. Extracted and mondified from IPCC (2007).

Rising CO2 and Ocean Acidification

- Atmospheric CO2 is increasing globally
- CO2 is more soluble in cooler waters

 Southern Ocean is thought to be one of the first ecosystems on the globe to be affected.

Existing Long-term monitoring sites

Take home message

- Trends and rates are not uniform across the Antarctica.
- Currently no long-term monitoring site other than Southwest Atlantic sector.
- Need to carefully monitor various parts of Antarctica.

Australia and Japan together make a huge dataset

Australian cruises zooplankton were collected

Japanese zooplankton collection stations

CPR Tows 1991-2008 Contribution to SO-CPR Survey

The Collaborative Project

- To construct a comprehensive database on key ecosystem components of the Indian Sector of the Antarctic Ocean.
- Pursued analysis to showcase changes of the zooplankton assemblages and distributions in relation to changes in the ocean frontal structure.

General processing for compiling database (net haul data)

- recover historical data
- standardized as much as possible
 - trawl types (routine, target, etc) by depth profile and gear, split-routine trawls merged
 - taxonomy
 - recalculation of volumes where possible
- error checking
- entered missing data from paper records
- Analysed bottle samples that have not yet been analysed.
- reformatted to standardized templates

Project outcomes Some examples of trends and change observed, and the way forward

N.B. Certain years similar in terms of areal coverage ("extent") BUT very different in terms of seasonality e.g. Duration in 1980 v 1999

High degree of interannual variability reflected in annual cycles (ice concentration) e.g. along long-term biological transect 110°E:

Synoptic variability –
passage of storms –
rapid change in ice edge zone

in situ chrolophyll measurements on board "Shirase"

ZOOPLANKTON CHANGES OVER TIME – SEA ICE ZONE (CPR DATA)

Trends in Adelie populations

(an example near Syowa)

(Data in Kato et al. 2006 Polar Biosci., and NIPR unpublished)

Detected changes

- 1) Strong decal variability from sea ice and from early satellite data.
- 2) Further significant and interesting patterns were detected in various components of the ecosystem
- 3) Processes linking these signals are far from clear
- 4) Not enough to draw definite trends or change.
- 5) Need to further pursue synthesis of existing datasets to make connections between these observed signals

Next Step: Strategic monitoring

- > Is it OK to carry on collecting these data in the same manner?
- > Are the collected data good enough to answer burning scientific questions?
- > Science Questions
 - What are the current state of ecosystem?
 - What are the ecosystem response to physical change?
- > Strategy
 - Areas, transects. Where, when, how often?
 - Monitoring and intensive process study
- > Coordination needed at a higher level

Where to strategically target??

- ➤ High productivity associated with Kerguelen plateau
- >Frontal system rapidly shifting southwards
- ➤Includes both krill (High latitude) and fish (Subantarctic) based ecosystems within the area
- Area of mutual interest (Australia, Japan, France)

SOUTHERN OCEAN SENTINEL

GOAL

Estimate status of Southern Ocean ecosystems and trajectories of change, accounting for regional, seasonal and inter-annual variation

The Southern Ocean as a natural laboratory

- Advance warning
- Model validation through regional differences
- Potential to measure ecosystem change in the absence of direct effects
- Simplified food web to test consequences of climate change
- Management of regional activities requires measures of regional change
- Concurrent measures across SO allows relating local scale studies (observations/time series)

Southern Ocean Sentinel

Program of work toward benchmarking

Assessment models (2011-2015)
Indicators (2012-2016)
validation
methods
Design (2013-2017)
levels of measurements
pilot work (transect choice)
Implementation (2014-2018)
Benchmark current status (2020)

For more information contact:
Andrew Constable
[Andrew.Constable@aad.gov.au]

Concluding Remarks

- Furthter need to link various signals detected from historical data (understand the processes behind)
- Standardisation of methods for future monitoring and observation
- >Strategic distribution of the efforts important
- ➤ High level coordination essential for effective monitoring within limited resources

