Augmenting earth system models to capture global-scale energy flows through the planktonic food web to fish

Effects of Climate Change on the World's Oceans Yeosu, Korea May 17, 2012

Charles Stock, John Dunne, Jasmin John NOAA/Geophysical Fluid Dynamics Laboratory

Earth System Models: adding the biosphere to global climate simulations

 ESMs emphasize computationally-efficient resolution of broad-scale carbon and nutrient fluxes

- This often results in coarse resolution and validation of planktonic food web dynamics, which:
 - Limits the mechanistic resolution of biogeochemical processes
 - Limits the utility of ESMs for assessing the impact of climate on living marine resources

Primary production is a poor indicator of globalscale fisheries yields

Primary production is undoubtedly linked to fisheries production, but the relationship is complex!

Friedland et al., 2012, PLoS-ONE 7(1)

The COBALT (Carbon, Ocean Biogeochemistry and Lower Trophics) model objectives:

 Capture interactions between climate and the ocean's global nutrient and carbon cycles with a more highly-resolved, mechanistic representation of the planktonic ecosystem

 Capture the impact of climate on broad-scale patterns in the flow of energy through the planktonic foodweb to fisheries and other living marine resources.

Planktonic food web structure (simplified)

Simple representation of consumer bioenergetics

Over-arching aspects of the parameterization of food web dynamics

- Rely as much as possible on empirical and theoretical constraints (e.g., allometric relationships)
- Enlist a pragmatic approach for calibrating particularly uncertain parameters to broadscale emergent patterns (Stock and Dunne, 2010)

Planktonic food web structure (simplified)

Primary production (g C yr⁻¹; total = 55.7 Pg C yr⁻¹) (CORE-forced hindcast; 100 year spin-up; last 20 years)

Primary production (g C yr⁻¹; total = $55.7 \text{ Pg C yr}^{-1}$)

COBALT captures observed differences in mean productivity across different ocean provinces

Fraction of primary production from large phytoplankton

Planktonic food web structure (simplified)

Fraction of primary production consumed by microzooplankton

- Tropical/Subtropical: 74.5 (2.0)
- Temperate: 60.8 (1.8)
- Polar: 59.2 (3.3)

Modeled microzooplankton grazing

Bacterial production scales with primary production

Cole et al., 1988. Limnol. & Oceanogr., 43, 1-10

- Bacterial Prod. ~
 20% of NPP over
 range of coastal and
 estuarine systems
- Ratio may be lower (~10-20%) in oceanic systems, and very low in Southern Ocean (Ducklow, 1999)

Bacterial Production/Primary Production

Bacterial growth efficiency increases from open-ocean to coastal system

- Open ocean systems: 0.15 (0.12)
- Coastal systems: 0.27 (0.18)
- Estuarine systems: 0.37 (0.15)

Modeled BGE exhibits cross-system trend similar to that observed

Bacterial carbon demand/NPP

Planktonic food web structure (simplified)

Global estimates of ratio of mesozooplankton production to primary production

mesozooplankton biomass (mg C m⁻³)

Global average from many net tows NOAA/NMFS COPEPOD database (O'Brien, 2005)

Global estimates of ratio of mesozooplankton production to primary production

chlorophyll

$$\mu_{LZ} = f(chl, sst, W = 25 \mu gC)$$

90E 180 90W 0

$$mzp = \mu_{LZ} \times (MZ + LZ)$$

Hirst and Bunker, 2003

Mesozooplankton production (mg C m⁻² day⁻¹)

Independent Estimates

Model

Correlation = 0.74, bias = 0.25

Summer ratio of mesozooplankton production to primary production

Independent Estimates

Model

See also: Stock and Dunne, 2010

Internally consistent estimates of global energy flow through the planktonic ecosystem

Conclusions

- Need to look beyond primary production to understand global marine resources and mechanistically resolve biogeochemical processes
- COBALT captures emergent global-scale energy flow patterns throughout the planktonic food web
- This offers internally consistent global energy flow estimates
- Intended as a robust baseline for linking biogeochemical and ecosystem interests