

Ocean circulation under climate change: Examples of qualitative changes

Jacob Schewe
Potsdam Institute for
Climate Impact Research

Acknowledgments

Anders Levermann
Potsdam Institute for
Climate Impact Research

Andreas Born University of Bern

The global ocean circulation

- interconnected through basin-wide currents and the Antarctic Circumpolar Current
- regional features have their own specific dynamics
 How might these circulation patterns respond to climate change?

Method

- Explore ocean dynamics with Intermediate Complexity model (CLIMBER-3α)
- Reconcile results with AOGCMs and observations/paleo-records

Atmosphere Model Atmosphere-Ocean Coupler Atmosphere-Surface Interface VECOPE Terrestrial Vegetation Model MOM-3 Ocean Model

Montoya et al., 2005

MOM-3 ocean model:

3.75° x3.75°, 24 variably spaced vertical levels (25 m to 500 m)

Low background value of vertical diffusivity (0.1-0.4 cm²/s)

Low-diffusive tracer advection scheme (Prather, 1986; Hofmann & Maqueda, 2005)

Explicit free surface

POTSDAM2 atmosphere model

(Petoukhov et al., 2000, Ganopolski et al. 2001)
2.5-dim. statistical-dynamical model
7.5° x 22.5° horizontal resolution and parameterized vertical

Driver of global overturning circulation: Wind-driven upwelling in Southern Ocean

Relative contributions of different basins determined by density distribution

Consistent response to wind stress and freshwater forcing

Consistent response to wind stress and freshwater forcing

- Global-scale ocean circulation responds linearly to changes in wind stress and buoancy distribution
- But regional circulation patterns may have more complex dynamics, not necessarily linear

Prominent example: North Atlantic Deep Water Formation (Thermohaline circulation)

Unlike upwelling, sinking is confined to a few small regions in the North Atlantic Dense surface waters are required for deep convection → Cold & salty Circulation advects "its own" salinity → internal positive feedback…

Bistability through salt-advection feedback

20S 0 20N 40N 60N Advection of temperature and salinity (Stommel 1961; Rahmstorf 1995)

plus assumption:

$$M = K \cdot (\rho_{North} - \rho_{South})$$

$$\rho = \rho_0 \cdot (1 + \beta \cdot S - \alpha \cdot T)$$

External forcing can be amplified by bistability

The subpolar gyre

Nasa

Horizontal recirculation pattern in North Atlantic

Deep Water formation happens *inside* the gyre

Bistability of Atlantic subpolar gyre

Freshwater pulse of 0.05 Sv for 25 years is sufficient for transition between two stable states of subpolar gyre circulation

Subpolar gyre bistability

SAT difference

Mechanism

Baroclinic feedbacks

Salinity feedback

"Internal feedback" salinity in temperature in center of gyre center of gyre \oplus internal internal Θ ⊕ T-feedback S-feedback density in center of SPG salinity import downward isopycnal from tropics mixing of heat strength of subpolar gyre Θ external feedback ratio: overflow/ density on DWF south of GSR GSR slope

Levermann & Born, GRL, 2007.

Salinity differences

Temperature feedback

"Internal feedback"

Temperature differences

Meridional gradient of potential energy

Bistability of Atlantic subpolar gyre

Evidence from the past

(Jakobsson, 2008)

8.2k event: abrupt cooling in Greenland, aprupt and persistent cooling in NW North Atlantic

Explainable by persistent transition of SPG towards a stronger state

Transition is associated with reorganization of North Atlantic circulation

Dynamical reason: Bistability of subpolar gyre

(de Vernal and Hillaire-Marcel, 2006)

Subpolar gyre bistability

Precipitation into the Nordic Seas from NCEP-NCAR

Southwest Pacific circulation under global warming

Implications for sea-level ...

Self-amplification?

Or simply magnitude of forcing?

Schewe & Levermann, in prep.

Conclusions

- While some components of the global ocean circulation react quasilinearly to climate changes, others are governed by positive feedbacks
- These feedbacks can amplify external forcing, and lead to abrupt and/or persistent changes in response to climate change.
- Because of such non-linearities, and also because of the magnitude of expected forcing, fundamental changes in large-scale circulation patterns cannot be excluded