

Kelp forest/seaweed bed as mitigation and adaptation measure: Korean Project Overview

Workshop - Coastal Blue Carbon:
Mitigation opportunities and vulnerability to change

2012. 5. 14

Ik Kyo Chung Pusan National University

Jung Hyun Oak², Kwang Seok Park³, Jong Ahm Shin⁴, Jong Gyu Kim⁵ and Jin Ae Lee⁶

Outline

- ✓ Introduction
 - Blue carbon (2009) & seaweeds
- √ Korean Project (2006 2011)
 - AGW & Coastal CO₂ Removal Belt (CCRB, 2005)
 - Pilot seaweed A/R CDM farm (2009-11)
- ✓ Recognition of kelp forests and seaweed beds
 - Estimation
 - Seaweed Solution
 - Yeosu Expo: Triton Sea Forests
 - Advertisement (Campaign slides)

Two reports published in 2009 - The Management of Natural Coastal Carbon Sinks and Blue Carbon that brought the importance of land-ocean interface ecosystem to the attention of climate change practitioners.

Blue carbon

- Implement win-win mitigation strategies in marine sectors
 - Improve energy efficiency in marine transport, fishing and aquaculture sectors as well as marine-based tourism;
 - Encourage sustainable, environmentally-sound oceanbased production including algae and seaweed;
 - Ensure that investment for restoring and protecting the capacity of blue carbon sinks to bind carbon and provide food and income is prioritized in a manner that also promotes economic development opportunities;
 - Catalyze the natural capacity of blue carbon sinks to generate by managing coastal ecosystems for conditions favorable for seagrass, mangrove, and salt marshes.

No soil – pros & cons

Standing carbon stock (gC m ⁻²) Plants Soil		Total global area (*10 ¹² m ²)	Global carbon stocks (PgC) Plant Soil		Longterm rate of carbon accumulation in sediment (gC m ⁻² yr ⁻¹)	
		Unknown (0.22 reported)			210	
7990		0.157	1.2		139	
184	7000	0.3	0.06	2.1	83	
120- 720	na	0.02 - 0.4	0.0009- 0.02	na	na	
	7990 184 120-	Plants Soil 7990 184 7000	Plants Soil (*10 ¹² m²) Unknown (0.22 reported) 7990 0.157 184 7000 0.02 - 0.4	Plants Soil (*10 ¹² m²) Plant Unknown (0.22 reported) 7990 0.157 1.2 184 7000 0.3 0.06	Plants Soil (*10 ¹² m²) Plant Soil Unknown (0.22 reported) 7990 0.157 1.2 184 7000 0.3 0.06 2.1	

Climate Bio-Engineering

Kelp Forest

- Kelp forests are found on rocky bottoms and provide habitat for many organisms
- Gant brown bladder kelp *Macrocystis* has a strong holdfast and gasfilled floats
- Macrocystis can grow up to **0.6 meter** (2 feet) per day

Mitigation - Sink

Marine Algae for Carbon Sequestration

- No toxic species
- Long-life span
- High growth rates
- High photosynthetic rates
- High carbon content
- C:N:P: ratio = 550:30:1 (Atkinson & Smith, 1983)

CUCUCAV

Coastal CO₂ – removal belt (CCRB)

Schematic diagram "Seaweed A & M belt" in CCRB (Chung, 2005)

A stands for Adaptation and M for Mitigation

Coastal CO₂ removal belt (CCRB)

Conceptual definition

- ✓ the coastal region
- ✓ natural and/or man-made plant community which conducts removing CO₂ like in forest
- ✓ various levels of the spatio-temporal scales

Operational definition

- ✓ additionally constructed man-made marine plant community which is managed by CDM (M&A) project
- ✓ definite scale of area or volume designated in the PDD with approval of UNFCCC EB
- √ various levels of the spatio-temporal scales

해조류를 이용한 온실가스 저감연구 사업

Greenhouse Gas Emissions Reduction using Seaweeds

[참여연구기관]

국토해양부, 해양수산기술진흥원, 부산대학교, 인천대학교, 성균관대학교, 수산과학원, 부경대학교, 동서대학교, Ecoeye, RIST, RCC, Pegasus Int.

Project outline

Project overview (Algae and Global Warming: AGW)

The Korean Ministry of Land, Transport & Maritime Affairs (formerly MoMAF)

Project period: 2006-2011 (5 yrs)

Total budget: 6 b Korean Won (ca 5 m US\$)

Seaweed Solution & Seaweed Initiative

Innovative research on seaweed biology & ecology

Bench marking: A/R => Seaweed CCRB

LULUCF => CUCUCAV (Coast Use/Change Aquatic Vegetation)

Blue - REDD (Deforestation in Developing Countries)

Challenge!

New Code and Methodology

Baseline/Monitoring of CCRB

Estimation of GHG emissions reduction using seaweed sinks

Wild seaweed biomass (rank): baseline study

Wild seaweed biomass

Regional average biomass densities of five dominant species

MILTM MILTM KIMST

해조류를 이용한 온실가스 저감연구

조림/재조림 분야와 유사한 새로운 온실가스 생물 흡수원을 찾기 위하여, 국토해양부의 지원으로 2006년부터 시작된 연구사업

- 3년간의 기초연구를 통해 새로운 CDM 사업 인증을 위한 CO2 흡수율 등의 관련 자료 확보
- 2009년 7월부터 경남 남해군 평산리 인근에 실증 연구를 위한 모의 해조 CDM 사업장을 조성하고 현지 연구 조사 수행 중
- 0.5 ha 규모: 높은 CO2 저감량의 다년생 같조류 저연승방식 시설 (감태, 더용)
- 연안역 이산화탄소 저감벨트
 (Coastal CO2 Removal Belt: CCRB)
- 해조 CCRB 저감용량: ~10 tons CO2 ha-1yr-1
- CCRB는 해양환경에서 다양한 생태계 서비스를 제공: 기후변화에 따른 해수면 상승에 적면한 연안역의 현실적 적용 및 저감 방안

모의 사업장 시설 및 운영

- 모의 해조 CDM 사업장 시설
- 날해 평산리
- 모의 CDM 사업장 CO2 저감량 모니터링
- 해조군집 모니터링: 생리 생태 및 탄소 수지 조사
- 사업장 시설 관리 및 운영
- 해조 CDM 추가성 검토

강태(Ecklonia) & 공피(Ecklonia & 공피(Stolonilera)

1단계: 기초연구 (2006-2008) • 높은 광합성 효율 보의

- 젊은 광합성 효율 모임
 다년간의 사업기간에
- 생육 가능한 다년생 갈조류

2단계: 2년간의 조사 (2009.5-2011)

- 다년생 갈조류의 생물량 변동과 해양환경 요인 변화 모나타림, 경제성 분석
- 해조류 흡수원 CDM의 방법론 제안 및 사업계획안 개발 예정

Coastal CO₂ Removal Belt

J Appl Phycol DOI 10.1007/s10811-010-9604-9

Using marine macroalgae for carbon sequestration: a critical appraisal

Ik Kyo Chung • John Beardall • Smita Mehta • Dinabandhu Sahoo • Slobodanka Stojkovic

Received: 27 July 2010 /Revised and accepted: 24 September 2010 © Springer Science+Business Media B.V. 2010

Pilot Seaweed CDM (M&A) Farm Study

Pilot Seaweed CDM (M&A) Farm Study

Boundary (buoys); Density (biomass /m rope); Depth

Pilot Seaweed CDM (M&A) Farm Study

$\Delta TIC_{seaweed} = TIC_{control} - TIC_{seaweed}$

- Measuring Instrument: VINDTA 3C (Versatile INstrument for the Determination of Total inorganic carbon and titration Alkalinity)
- TIC: Coulometric method & Alkalinity; Titration method
- Thermodynamic model estimation CO₂: CO₂SYS program

Measurement of 2 parameters (TIC, TA)

Using Thermodynamic Model

$$TA = [HCO_3^-] + 2[CO_3^2] + [H_2BO_3^-] - [H^+]$$

TIC =
$$[HCO_3^-] + [CO_3^2] + [CO_2(g)]$$

$$pH = -log[H^+]$$

pCO₂ calculation

 $15.7 \sim 16.6 \ tCO_2 \cdot ha^{-1} \cdot yr^{-1}$

Triton Sea Forest

- Real time pCO₂ monitoring (CDMA transmission)
- Seaweed ecology (April 6, 2012)
 - density: without Sargassum avg. 4 kg·m⁻² ~ (+ Sargassum) max. 30 kg·m⁻²
 - coverage: over 90% (Ecklonia, Sargassum, Colpomenia, Codium, etc.)
 - many recruits of young fronds

Triton Seaweed Reef

pCO₂ Monitoring

Triton Sea Forest

Chemical property

- ✓ More Fe and CaO
 - ✓ Fe trace element
 - ✓ Ca, Fe chelating agents

						(단위: wt%)
구 분	SiO ₂	CaO	Al ₂ O ₃	T-Fe	MgO	S
slag	33.1	40.0	13.7	0.4	8.6	0.3
Triton	11.2	41.5	1.4	20.0	6.5	0.1

No adverse effects on biota

- √ Harmful substances/leakage assessment, bioassay (bacteria, plankton, benthos, fish)
- ✓ Seaweed spore germination, settlement, growth, food safety assessment

pe A Type T Hybrid Type

Coastal CO₂ – removal belt (CCRB)

Boundary? - buoy No soil Expandability (offshore)

Coastal CO₂ – removal belt (CCRB) : summary

biomass

16 *t*CO₂e⋅ha⁻¹⋅yr⁻¹

DIC (pCO_2) 15.7~16.6 $tCO_2 \cdot ha^{-1} \cdot yr^{-1}$

$$\Delta TIC_{\text{seaweed}} = TIC_{\text{control}} - TIC_{\text{seaweed}}$$

 $\sim 10 \text{ tCO}_2\text{e}\cdot\text{ha}^{-1}\cdot\text{yr}^{-1}$

New Paradigm & New Era

RED ALGAE PAPER

REDD & Blue REDD

Seaweed Bio-fuel Make Sense!

Integrated Multi-Trophic Aquaculture (IMTA) **Suspension Extractive Aquaculture** Fed Aquaculture Inorganic **Organic** (Finfish) (Seaweeds) (Shellfish) **Nutrient Zone** DIN **Deposit Extractive** 2010.02.23 Aquaculture (Invertebrates

Asian Network for Using Algae as a CO₂ Sink

Working Together Saving Tomorrow Today 28 November - 9 December 2011

Seaweed Solution - Sink and Swim!

Seaweeds are promising organisms as adaptation and mitigation measures against global warming.

Solution:

- (1) Red algae paper;
- (2) Seaweed biofuel; and
- (3) Seaweed sink.

The Korean project "GHG Emissions Reduction Using Seaweeds"

Working Together Saving Tomorrow Today

28 November - 9 December 2011

SeaweedSolution: Sink&Swim

Summary

- ✓ Climate Change & Blue carbon
 - Win win
- √ Korean Project (2006 2011)
 - Coastal CO₂ Removal Belt (CCRB, 2005)
 - Pilot seaweed CDM (adaptation & mitigation) farm
- ✓ Recognition of kelp forests and seaweed beds
 - ~10 tCO2_e·ha⁻¹·yr⁻¹ (biomass & DIC)
- Seaweed Solution
 - Sink; Biofuel; Algal Paper, etc.
 - Carbon-zero (negative) town
 - Implementation of seaweed solutions (M & A)
 - w/Renewable ocean energy (windmill, wave, etc.)
 - Seaweed-based integrated multi-trophic aquaculture

Seaweed Solution!

Carbon Sequestration (sink)

Red Algal Pulp/Paper

Seaweed Biofuel

New Paradigm & New Era C-Negative Ocean Village

> Acknowledgements: Korean MLTM MRI/PNU APPA