Impact of Horizontal Model Resolution on Air-Sea CO₂ Exchange in the California Current

J. Fiechter (UCSC), E. Curchitser (Rutgers), C. Edwards (UCSC), F. Chai (U. Maine), N. Goebel (UCSC), F. Chavez (MBARI)

Funding: NSF, NOAA/NMFS

Future Meeting, Hawaii, 15 April 2014

Motivation

Role of EBC regions in global carbon cycle

- > Carbon exchange difficult to estimate from observations alone.
- > Shelf outgassing compensated by primary production offshore.
- Substantial zonal and meridional gradients and variability.

Downscaling from climate to regional models

- ➤ Impact of horizontal resolution on air-sea CO₂ fluxes
- Implications for estimating net regional carbon budget.

Coupled Physical-Biogeochemical Model

Ocean Circulation Model

- > ROMS
- > Resolution: 1/3°, 1/10°, 1/30°
- > 42 vertical levels
- > BC/IC: SODA, monthly
- > Surface: COAMPS, daily

Biogeochemical Model

- > NEMURO (3N, 2P, 3Z, 3D)
- ➤ DIC, Alkalinity, Ca Carbonate (Hauri et al., 2013)
- ➤ OCMIP air-sea CO₂ exchange
- ➤ NEMURO BC/IC: WOA, monthly
- ➤ Carbon BC/IC: GLODAP, annual

Run duration

> 7 years (1999-2005)

Model domain and bottom topography (m)

Model-Data Comparison: Seasonal Surface pCO2

Significant bias reduction when increasing resolution from $1/3^{\circ}$ to $1/10^{\circ}$.

Since CCS is ~neutral, important for correct sign of air-sea exchange.

Air-Sea Flux: Impact of Horizontal Model Resolution

Red Line: Outgassing Region Blue Line: Equilibrium Region

1/3° solution grossly overestimates near-shore outgassing

Air-Sea Flux: Outgassing and Equilibirum Regions at 1/30°

Red Line: Outgassing Region Blue Line: Equilibrium Region

Equilibrium distance indicates local strengthening in outgassing

CCS Outgassing and Coastal Topography

Outgassing enhancement equatorward of topographic features associated with intensification of upwelling-favorable winds

Impact of Surface Atmospheric Forcing on Air-Sea Flux

Net Air-Sea Carbon Exchange in CCS

At 600km offshore, CCS is net CO₂ sink of ~6.0 TgC/yr Net sink contribution: 20% SoCCS and 80% NoCCS

Summary

Role of EBC regions in global carbon cycle

- ➤ CO₂ outgassing on the shelf and absorption offshore.
- > At 600km offshore, CCS is net CO₂ sink of 6.0 TgC/yr.
- ➤ Net sink contribution: 20% SoCCS and 80% NoCCS.
- > Net carbon exchange at 1/10° is 10% larger than at 1/30°.

Downscaling from climate to regional models

- > 1/3° vs. 1/10°: mesoscale eddy activity (Gruber et al., 2011).
- > 1/10° vs. 1/30°: shelf slope accuracy (Estrade et al., 2010).
- Enhanced localized outgassing equatorward of capes.
- Wind forcing resolution important to resolve expansion fans.