Modeling the California Current
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(some) Promising Results
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Case Studies

* Future California Current
Ecosystem (CCE)
conditions (forced by an
IPCC scenario)

e Hindcast of the CCE from
lower trophic levels to
sardines, anchovy and
fleets.




Case 1: California Current

A future scenario
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e Simulation

e 1970-2050 using 20th century

climate (emissions)
transitioning to RCP8.5

e One way physical and BGC
downscaling of CCS

e Global to regional boundary
conditions for both physics and
BGC.



CC-IEA (one way downscale) simulation

¢ Global model: GFDL CM2.1mESM

Nitrogen Cycling

e Atmosphere at 1°, ocean (MOM) at 1° & & 6
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e BGC is (Carbon, Ocean <2
Biogeochemistry And Lower Trophics)

e Regional model:

* Physics: ROMS (7 km or ~1/12th deg),
40 vertical layers)

e BGC: Enhanced CoSINE (C, Si, N
Ecosystem model), including oxygen
and full carbonate chemistry.




One-way downscaling: Physics and biology

GFDL GFDL-->ROMS

EOFs of summer SSTs



Cumulative wind stress

AveErage Lumulative YWind Stress EN M= ||.ll|.-'-||
1980-2049

42N | 35N

Average Cumulative Wind Stress [N.m-2.0
1 GR0-20d %




One-way downscaling: Physics (80 year simulation)
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Rich structures yet to be fully explored and uncertainties

guantified as we move to “marine ecosystem scenarios”
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Table 1. Likelihood Scale

Term* Likelihood of the Outcome
Virtually certain 99-100% probability
Very likely 90-100% probability
Likely 66-100% probability

About as likely as not 33 to 66% probability

Unlikely

0-33% probability

Veery unlikely 0-10% probability

Exceptionally unlikely 0-1% probability

Taken from: “Guidance Note for
Lead Authors of the IPCC Fifth
Assessment Report”

Rykaczewski and Dunne (2010)



Case 2: California Current

From physics and lower trophic levels
to sardine, anchovies and fishing fleets



Hypotheses for
low-frequency variability

 Environmental conditions (bottom up)

e Temperature controls population expansions and
contractions via spawning behavior (e.g., Lluch-
Belda et al., 1991).

e Reproduction success linked to mesoscale
features (MacCall, 2002).

* Food availability and composition determines
population success (e.g., Van der Lingen et al.,
2001).
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 Affects longevity--affects survival in adverse
conditions.

 Differentially preserve more fecund older fish and
their migratory behavior. |

* Productivity depends on learned migratory
behavior (Petigas et al., 2006).



Our approach: coupled climate-to-fishers model

Mortality
Movement




Climate-to-fishers: Multi-species fish model

e Simulate 5-6 species with an individual based modeling
approach.

 General food web: Species can compete for common
prey and eat each other.

o Explicitly model growth, mortality, reproduction and
movement.

 One species can represent a fishing fleet as individuals.



Climate-to-fishers:
Why an IBM (Individual Based Model)

e Natural unit in nature

 Allows for local interactions and
complex systems dynamics

 Complicated life histories

« Plasticity and size-based interactions

e Conceptually easier movement




Climate-to-fish-to-fishers







...almost there - fluctuations captured (but not yet
explained in space and time)
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Rose et al. and Fiechter et al.

(in preparation, to be submitted to
Prog. in Oceanography Special Issue)
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