Ecosystem comparison of trends in zooplankton community structure and role in biogeochemical cycling

Deborah Steinberg

Context of PICES FUTURE program

How do changing physical, chemical, and biological processes alter ecosystem structure and function?

Ecosystem status, trends, & forecasts

Zooplankton and biogeochemical cycling

Outline

- Study sites & zooplankton community structure
- Long-term changes in zooplankton, zooplanktonmediated export, & comparisons between sites
- Summary & conclusions

Study sites

Zooplankton community comparison

Increase in mesozooplankton biomass (top 150 m) at BATS

Day & night combined n = 226 $r^2 = 0.09$ p < 0.0001 Why?

Data points are 12-month moving averages to dampen seasonal signal

Climate connections

12-month moving averages p < 0.01 for all comparisons

Steinberg, Lomas, & Cope (2012)

Vertical Migration and active transport and fecal pellet flux

Increase in active transport & fecal pellet production at BATS

Annual migratory $CO_2 + DOC + POC$ flux across 150 m

Annual fecal pellet production (egestion) in top 150 m

= 5-33% of POC flux

= 28-89% of POC flux

Steinberg, Lomas & Cope (2012)

Increase in active transport at ALOHA

Mesozooplankton vertical biomass profiles

BATS/ Sargasso Sea

Steinberg et al. (2008), Goldthwait & Steinberg (2008)

Fecal pellets and other sinking particles

ALOHA

BATS

Pal LTER

(Fecal pellet indicators!)

Overall comparison between sites

Site- Summer (annual)		Total POC flux -sediment trap (mg C/m²/d)	Mean active flux by DVM (mg C/m²/d)	Pellet Flux across 150 m (mg C/m²/d)
BATS (annual)		13 (29)	(4)	3 (6.5)
ALOHA (annual)	⊒.	18 (29)	2-8 (5*)	2.5
K2	creas	23 - 62	16-46	6.5 - 7.4
PAL LTER (annual)	sing	73 (6)		42 (31)

Expansion of subtropical biome in the North Pacific

Intensification of O₂ depletion by diel vertical migrators

Migration depths are greater where subsurface O₂ concentrations are high

In O2 minimum zone areas, migrators descend as far as upper margins of low O₂ waters, focusing O₂ consumption there, and intensifying O₂ depletion

Warming in the Western Antarctic Peninsula

Average winter (June-Aug.) temperature +1.1°C per decade: 6°C since 1950: 5x global ave.

Sea ice is declining

Increase in Heat Content of Water Over Shelf

Upper Circumpolar Deep Water (UCDW) heat content

Antarctic krill & salps

Zooplankton composition effects on particle export

krill fecal pellets

salp fecal pellet

Mean sinking rate = 197 m/ d

= 700 m/ d

Time series sediment trap 21 samples/ year

Fecal pellet production experiment

Fecal pellets are major contributor to total POC flux

Effect of changes in krill & salps on fecal pellet flux

FP flux (mg C/ m²/d)

Krill- 11.0

Salps- 0.2

High ice

FP flux (mg C/ m²/d)

Krill- 0.8

Salps- 2.8

Low ice, warmer

Limacina pteropods, sea ice, and climate indices (annual anomalies)

Potential indicators of environmental stress: Regional comparison in prey total lipid content

Summary & Conclusions

- Changes in zooplankton community structure over time, or in space, differentially alters organic matter export.
 Implications for feeding the deep sea too.
- Patterns can (sometimes) be linked to climate oscillations and other physical dynamics (e.g., ice)
- Measurements of 'function' are needed to incorporate the role of zooplankton into predictive biogeochemical models.
 - Time series are key!

THANK YOU (MAHALO)!

BATS, Pal LTER, VERTIGO coauthors, collaborators, technicians & students

Funding by National Science Foundation Biological & Chemical Oceanography, & Office of Polar Programs

